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ABSTRACT 

A method of analyzing laminated-composite, linear-elastic plate and 

shell structures has been developed based on the hybrid stress finite-element 

model. Flat-plate elements are used for both plate and shell structures. 

Three quadrilateral elements designated by ELEM1, ELEMZ, and ELEMR, all with 

linear in-plane boundary displacement and linear in-plane stress assumptions, 

are chosen for use. Transverse shear deformation effects and rotary as well 

as in-plane inertia are included in all of these elements. The ELEM1 element 

can be applied to single-layer thin or moderately thick plates and shells. 

The ELEMR element can be applied to multilayer thin plates and shells, and the 

ELEMZ element may be used to analyze single-layer or multilayer, thin or thick 

plates and shells. 

The stiffness matrix, mass matrix, and equivalent thermal loading vector 

of these elements that are used in static, vibration, and thermal stress 

analyses, respectively, are developed and applied to analyze various plate and 

shell problems. Comparisons of results are made, whenever possible, with other 

existing solutions. This present method of analysis provides accurate, effi- 

cient predictions of (a) displacements and stresses under static or thermal 

loading and (b) natural frequencies under free vibration. The method developed 

in this study can be ised as a reliable tool in structural analysis and design; 

it can also be applied to explore material property characterizations and 

selections for laminated composite materials. 
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SECTION 1 . 

INTRODUCTION 

1.1 Purpose of the Study 

In the aesign of structures consisting of layered-fiber reinforced com- 

posite materials, a aesigner is often faced, with the problem of a complex, 

structure subjected to complex loading conditions.  The structure is usually 

in the form of combined shells and/or plates.  The loadings may include static, 

vibratory, and/or transient mechanical loading as well as thermal loads.  In 

order to assure that the structure can sustain various loading conditions    i 

without inducing failure of its normal functions, the designer must choose the 

moijt appropriate composite material, and determine the appropriate dimensions 

and configuration of the layered composite material.  Therefore, reliable 

analytical tools are needed (1) to predict the behavior of a tent«, .live design 

and (2) to improve, if necessary, a .tentative design based on detailed analysis. 

More specifically, the designer should be able,to predict (1) the stress and/or 

strain distribution at any point within the layered| composite and (2) deflec- 

tions of the structure, so that the failure or safety of the structure can be 

predicted (a) by comparing the stress or strain against an appropriate strength- 

failure criterion and/or (b) by comparing the calculated deflection against 

specified deflection limits.  If the tentative design is not satisfactory, 

then the analysis will point cut the weak points of the structure and suggest 

changes in the design, which could mean both a change in dimension and in 

orientation of the fiber directions of the composite. 

The main objective of this project is to develop appropriate structural 

analysis tools to assist the designer in material selection and material charac- 

terization.  In particular, it is intended that these analysis tools when ade- 

quately developed and validated be employed to make a realistic assessment of 

the types and values of composite materials/structure?, properties that wili 

provide "optimum" resistance to the transient mechanical and/or thermal loads 

experienced by the structure.  Because of the complex nature of the problem, 

the finite-element method is selected as an appropriate and versatile 

teüamfri* 



mathematical model to cope with the complex structure and loading conditions. 

Because transverse shear deformation effects are known to be important in 

laminated composites [1,2,3,4]*, the usual classical (Kirchhoff) thin plate 

and shell theory cannot be used directly; accordingly, the finite-element 

.model developed and utilized in the present study includes transverse shear 

.deformation effects. Since the conventional displacement finite-element 

method, when applied to relatively thick laminated plates, either has failed 

to predict accurately the local deformations and stresses of a plate under 

bending (5) ox  is too expensive to use because too many degrees-of-freedom 

are involved for even relatively simple problems (6], the hybrid stress 

finite-element model pioneered by Pian (7) provides a promising alternative. 

,   The hybrid stress model of the finite-element analysis is characterized 

by an assumed stress field in the interior of the element as well as an 

j assumed displacement field along the boundary of the element. Since a stress 

field is directly assumed, the prediction of stresses in a given problem is 

generally more accurate than that of the conventional assumed-displacement 

model where only the displacement field is assumed for both the interior and 

along the boundary of the element. Also great flexibility in terms of the 

formulation and the selection of element features is achieved because the 

assumed interior stress distribution and the assumed boundary displacement 

distribution functional can be selected independent of each other. The com- 

patibility of the interelement displacements is easily satisfied, since only 

the boundary displacement is assumed, while in the conventional-displacement 

model the satisfaction of compatibility usually poses a difficult problem. 

More important is the fact that transverse shear deformation effects, which 

cannot be neglected in many laminated composite plate and shell problems, can 

be easily taken into account by the hybrid stress model without an increase in 

the number of element degrees-of-freedom, as indicated in Ref. 8. Because of 

transverse shear deformation effects, thick laminated plates may have different 

cross-sectional rotations for each layer. Thus, a severe warping of the 

original plane section of the whole laminate develops under certain loading 

* 
References are denoted by numbers in square ( ] brackets. 



conditions.  This phenomenon can be closely modeled by the hybrid stress model 

with ease as will be seen later in this report. 

Structures of prime interest for future analysis and design include, 

among others, aerospace vehicles in the shape of a low-aspect-ratio lifting 

body, irregular shaped shells, and/or axisymmetric shapes.  Cutouts, branches, 

stiffeners, etc. may be present. Layered anisotropic construction may comprise 

a significant portion of the structure. 

For the analysis of curved shells, much recent finite-element work has 

been carried out using curved finite triangular and/or quadrilateral elements 

for cylindrical shells 19-11], conical shells [12], and shells of revolution 

[13,14]. These finite elements are convenient if the structure is smooth and 

regular since they can model the actual structure faithfully geometrically; 

however, these elements are not suitable or convenient for analyzing shells 

of irregular shape (irregular boundaries, arbitrarily-oriented cutouts, 

arbitrarily curved soape; ... ) Also, it should be noted that curved-shell 

elements are developed for some specific restricted geometry and hence when 

used for modeling irregular curved shells would entail significant geometric 

modeling errors unless the element size were very small compared with the main 

dimensions of the shell. Further, if the element size must necessarily be 

very small, it would be adequate to model the curved-shell structure by 

flat-plate elements.  In this case the analyst enjoys the advantages of (a) 

simplicity in element stiffness derivation and computation and (b) great 

computer program versatility in being able to treat a wide variety of irregu- 

larly-shaped structures with relatively simple computer program logic and com- 

putations since the element compatibility conditions and the transformations 

from local element coordinates to a global coordinate system for the entire 

structure are handled in a uniform fashion. 

Flat-plate elements based upon the assumed displacement approach have 

been used to analyze curved shells [15J.  Recently, Wolf [10] used flat-plate 

hybrid stress finite elements to analyze the "pinched cylindrical shell"; his 

predictions compare favorably with an independent solution obtained with 

assumed displacement-type curved finite elements [13]. Further, the assumed 

stress hybrid model nas been shown to be applicable readily to plates which 
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involve transverse shear deformation and/or thermal loading [Ü]. 

based upon the above considerations and especially its relevance to the 

present objectives of this project, the hybrid-stress finite-element model has 

been seiectca for use in this study.  In particular, flat-plate elements are 

developed for botn plate and stiell problems. 

Before any problems involving complex transient loading conditions can 

be solved, it is essential to develop and establish the reliability of the 

pertinent finite elements under static loading conditions.  Like conventional 

displacement finite-element models, the hybrid stress model for static analysis 

is also characterized by a stiffness matrix.  Once the stiffness matrix of an 

element is proved to be suitable for use, then dynamic problems can be pursued 

by developing a mass matrix and by first applying it to vibration analyses to 

establish the reliability of the mass marrix. 

As for thermal problems, the most important task is to develop an equiva- 

lent loading vector corresponding to a given temperature distribution. 

Therefore, in the past twelve-month period, effort has been concentrated 

on the selection and verification of the behavior of selected finite elements 

under static loading conditions, on the development and verification of the 

mass matrix of each of several finite elements, and on an equivalent thermal 

loading vector. 

1.2 Synopsis of the Investigation 

A method of analyzing plate and shell structures built with layered- 

fiber-reinforced composite materials has been developed.  The work done in the 

pas>L twelve months is described in the following sections of this report. 

In Section 2, the static analysis aspect is described.  It begins with 

a derivation of the stiffness matrix for single-layer flat-plate elements. 

Then, several candidate elements are studied and compared against each other 

on two test examples.  It is found that triangular-based quadrilateral elements 

are inferior to "basic" quadrilateral elements; therefore, a basic type of 

quadrilateral element is selected as the "best" element to be used in this 

study.  This single-layer element is extended to a multilayer element in 
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Subsection 2.3 which also includes a general derivation of the stiffness matrix 

for a multilayer element.  Both single-layer and multilayer elements are tested 

on plate problems in Subsection 2.4.  Example problems include single-layer 

isotropic plate problems.  Both thin plates and thick plates are included.  In 

Subsection ?.5, the flat-plate elements are applied to shell problems, in- 

cluding shells of revolution.  The necessary transformation for single-layer 

anu multilayer flat-plate elements, when applied to shell geometries, are 

developed in Subsections 2.S.1 and 2.5.2, respectively.  Example problems are 

discussed in Subsection 2.6, where problems of thin cylindrical shells and 

conical shells of different thicknesses are treated.  In both the plate and 

shell examples, comparisons are made with exact elasticity solutions or other 

approximate solutions whenever possible.  Excellent accuracy is observed.  Pre- 

dicted stresses are shown to be within 2% of the exact elasticity solution in 

one case.  These examples are discussed in Subsection 2.7. 

Section 3 begins with a discussion on the variational basis for selecting 

a mass matrix in the hybrid stress model. Then a hybrid-rational mass matrix as 

well as a lumped mass matrix is developed and compared.  It is found that the 

hybrid-rational mass matrix is slightly better than the lumped mass matrix for 

thin plate vibrations.  Since it is expected that the former will be much better 

than the latter for thicker plate vibration analyses, the hybrid-rational mass 

matrix is used thereafter throughout this study.  Example problems of plate and 

shell vibration are given at the end of Section 3.  The predictions for the 

lowest and next higher mode frequencies are compared with other solution method 

predictions and are found to be very accurate. 

Thermal-stress analysis is ri«*scribed in Section 4.  For given tempera- 

ture distributions, an approximation of the temperature within an clement is 

first established.  Then an equivalent loading vector is calculated based on 

this approximate representation of the actual temperature distribution.  Since 

numerical examples of thermal stress analysis do not appear frequently in the 

literature, in most of the examples given in this section, comparisons cannot 

be made.  However, the equivalent loading vector is verified through simple 

examples. 
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A summary of the work for this period of study and concluding remarks 

are given in Section 5.  This report ends with an appendix on the programming 

aspect of the present finite-element analysis. 
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SLOTION 2 

STATIC ANALYSIS 

2.1 Formulation of Single-Layer Flat-Plate Elements 

^_r JL' i l)e r *• vatA°.n of Elemen t S tiff nes s Matrices 

Tue formulation of the element stiffness matrix by the hybrid stress 

model is based on the Principle of Minimum Complementary Energy (Kef. 7). 

Along each boundary of the element, an assumed displacement distribution is 

selected; these element-boundary displacements are then expressed in terms of 

the nodal displacements q.  Next, an assumed stress distribution in terms of 

undetermined stress parameters ß is chosen throughout the interior of the ele- 

ment; this same distribution function, if desired, may also be used to approxi- 

mate tne prescribed surface tractions.  In terms of these distribution func- 

tions and associated unknowns q and p, one may write an expression for the 

complementary energy TT .  By setting üTT /<)b = 0 to minimize tne complementary 

energy, one obtains an approximate solution for jj in terms of q.  This enables 

one to evaluate the internal strain energy U entirely in terms of the gen- 

eralized nodal displacement unknowns q.  Then, by recognizing that the stiff- 
~ T 

ness matrix k  appears in the following form for U as U = 1/2 q Ji 3' one there- 

by identifies k in the hybrid stress model formulation.  This procedure is 

presented in detail in the following. 

The total complementary energy of one finite element is given by 

^c = - f   Sijtff Cii Ctf 6V - [. j; u, 6A (2.1) 

where 

S. ., ,,= compliance constants of the material 
ljki. 

0..  = stresses 

V   = volume 

A   = boundary area 

T.   = surface traction 
i 

u   = prescribed boundary displacement 



The functional TT is a minimum when the stresses satisfy the equilibrium con- 

dition. 

For convenience, consider a statically loaded continuum which is repre- 

sented by a single finite element.  In deriving the element stiffness matrix, 

the displacements along each boundary of the finite element are expressed in 

terms of the nodal displacements q and certain interpolation functions L, 

such that the displacement compatibility conditions with the neighboring ele- 

ments (when one models the continuum with a number of finite elements) are 

satisfied, 

U   = Lg (2.2) 

The element stresses in the interior of the element are then expanded in terms 

of a finite number of stress parameters j3 

£*= Efi (2.3) 
where P is chosen to satisfy the homogeneous equilibrium equations.  The 

surface tractions can then be written in the form of 

I = ßfi (2-4) 

where R is obtained by applying the element boundary conditions to P. 

Substituting Eqs. 2.2 to 2.4 in Eq. 2.1, one obtains. 

(2.5) 

By defining 

anu 

M 

Eq. 2.b  becomes 

e,  = j. RTLdA 

The best approximate solution for £ for the problem is obtained by setting 

üV   /öW   to zero.  The result is 
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Ü £ - § 2 = ° 
from which« 

(2.ü; 

(2.9) 

The  first term in Eq.   2.7  for fl     is  the total strain energy U in the element. 
c 

By substituting Eq. 2.y into U one obtains 

1 
2 LT = 4 f G V<5 8- 

— ^^ x>^ (2.10) 

By definition 

U = T ?T/c ft (2.11) 
X»    «w    -\-   ""'-' 

where k^ is the element stiffness matrix. 

Thus, by the hybrid stress model, the element stiffness matrix is given 

&y 

k = svs (2.12) 

2.1.2 Material, Stress, and Uisplaceraent Ässumptions 

The matrix £ in Eq. 2.6 is the compliance matrix that relates stresses 

£ to strains _e: 

e  = s <y (2.13) 

In this stuay, the following square symmetric material properties are 

assuiaed ror each layer of the composite material: 

) = 

1 

E;, c2 

11 . 
"13 

E3 

/ 
E2 *3 

E2 

/ 

63 

0 

m 

0 

\ 
Ox 

6z 
{ 

L 

(2.14a) 

iMürtriT" 
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witn E2 = E3, V12 = V13, v21 = V31, V23 = V32, Gi3 = G12, and "1" being the 

longitudinal fiber direction. 

In case the material axes do not coincide with the element coordinate 

axes (see Fig. la), the following transformed £ is used: 

S = 

s„7*M«n4 

(5„ +VS*)"^   täß+Sssjnh1 

$yn. 

V 

\ 

0 0 0     (SSf-5M)mn  ^flM^*1 

(zStrtSAtä (iV^WAr 2(44,) 

x 

£ 

(2.14b) 

where m = cos a, n = sin a. anu S. . =  the corresponding constants in Eq. 2.14b. 

The in-plane interior (and boundary) stress field P for o ,0   ,  and xy 
consists of a stretching part P and a bending part P : 

S *J 

P, = Ps(*^)+IJO^.Z) (2,15a) 

In this study, £ is assumed to be linear in x and y, and P  is either linear 

in x and y or quadratic in x and y.  The out-of-plane stress field P, for 

0,0,   and ü  is determined from the equilibrium equations of elasticity. 
xz  yz      z 

The matrix P in Eq. 2.3 consists of P, and P .  Different assumptions for 

different elements are summarized in Table 1 and a detailed description can be 

found in Subsection 2.2. 

10 
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Along element boundaries (Fig. 1L) , the following displacement field 

is assumed, for a typical side 1-2 of an element: 

tf = wta-s)+ vj2s (2.10) 

where s is the coordinate measured along the side 1-2, and nodal displacements 

u, v, w, Ö, and Ü are defined in Fig. lb. In other words, the in-plane dis- 

placements u and v are linear in both z and s, while the transverse displace- 

ment w is linear in s but is independent of z. The number of degrees of free- 

dom per node is 5. Both quadrilateral* and triangular elements are considered 

in this study (Figs. 1c and Id); therefore, the total degrees of freedom per 

element is, respectively, either 20 or 15. 

Variations of Eq. 2.16 can be obtained by adding a mid-point node and 

changing the linear functions of s in Eq. 2.16 to quadratic functions. 

Based on the assumed interior (and boundary) stress field P£ in Eq. 2.15 

and the assumed element boundary displacement field Lq in Eq. 2.16, the element 

stiffness matrix k can be obtained by carrying out the appropriate integration 

of Eq. 2.6 and substituting into Eq. 2.12. 

It should be noted that shear deformation effects are taken into account 

in Eq. 2.16, where 0 and Ü  are the rotations of the normal element of a plate; 
X     y 

these quantities are not to be identified with the slopes w  anc* w  of the 
> y    i x 

middle surface.  In other words, the normal to the undeformed middle surface 

dutiö uuL remain normal to tne üetormed middle surface.  Also, in the evaluation 

of H. by Eq. 2.6, the transverse shear energy terms arc included. 

Various elements with different assumed P;S and Lq are studied and the 

results are described in the following subsection, 

2_._2 Parametric Study_^and Selection of Single-Layer Elements 

Since the stress field of an element can be assumed independently of the 

boundary displacement field, it is possible to match different pairs of 

* 
Included are square, rectangular, and irregular quadrilateral geometries. 

L'N&nisartfclmakmirtiuaui... ^»—. 
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assumptions and to select those elements with the better convergence behavior. 

The stresses in an individual lamina may be considered as the combina- 

tion of the stretching and bending components as shown in Eq. 2.15. When the 

stretching component is represented by a complete linear expansion in x and y, 

while the sending component is represented by a complete quadratic expansion 

in x and y, the stress field can be represented by 34 independent stress 

parameters as follows: 

I   2   3  4   5"   fc  7  8  9   /0 ||  |2  U 14 15 Ifc  »7 t8 I? 30 2/ 22 23 24 25 # *1 *8 9  *> j/   32 33 34 

S 

[j X i z It m 1 f w •3 

1 % «y z n n A q 4 
3 
I 
1 

J 

i I l 1 

-I -i 

i 

1 
J 

2^ 
I fi X 1 

2 i 

i 

s 

& 

— — 

j 
-2 
«J 1 -zr f 2 

i 
-*3 X 1 

\ 1 X 3 £ V 
i 

Zx^ 
2 

*1 A 

(2.17) 

In constructing the various models, one of the following three differ- 

ent stress fields is used in a giver, model: 

(a) Type (L,L ):  This corresponds to columns l-'J, 10, 11, 12, 15, 

18, 19, and 2U of the matrix in Eq. 2.17, with a total of 16 ß's. 

The designation (L,L ) stands for a complete linear expansion in 

x and y for the stretching component and an incomplete linear ex- 

pansion in x and y for the bending component. 

(b) Type (L,L):  This corresponds to columns 1-20, with a total of 

2') ii's.  The designation (L,L) stands for a complete linear 

expansion in x and y for both the stretching and the beniing 

component. 

12 
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(c)  Type (L,Q): This corresponds to columns 1-34, with a total of 

34 ii's.  The designation (L,y) stands for a complete linear ex- 

pansion in the stretching components and a complete quadratic 

expansion in bending. 

Three types of element-boundary displacement fields (along side 1-2, 

for example) are used; 

(a) Type (L): This corresponds to tne following: 

(2.13) 
V =   v, (l-S)+ v2$ -Z[Qxl(l~s)+eXzs] 

where s is  the coordinate along one side of  the element.    The 

designation   (L)   stands  for a complete linear expansion in s. 

(b) Type   (Q):     This corresponds  to the  following: 

U -     U,0~S)+ UZS + 4Uvt(i-5)S ^2l9u,0-S)-h e^S] 

Y=   v, it~s) + v2$+4vm(i-s)S~z[eXi(i-sh9xls} (2.19) 

The subscript m stands for the mid-point side node.  The designa- 

tion (Q) stands for a complete quadratic pxnsn^i^n for the dis- 

placements. 

(c)  Typo (Q ):  This corresponds to the following: 

13 
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where Ü  is the rotation along the element side and is a function of 0 and 0 . 
n x     y 

The designation (Q ) stands for a quadratic expansion tor w only.  If type (Q) 

is used on certain sides and type (L) is used on the remainder, then the 

designation is (L,Q). 

Because shear deformation effects are of major concern in this study, 

the selected elements should be able to converge rapidly both for thin and 

thick plates.  Therefore, two extreme test problems are used to evaluate vari- 

ous elements in order to select the most suitable elements for future use.  One 

is a simply-supported square thin plate with a thickness-to-side ratio of 1:100, 

and the other is a simply-supported square thick plate with a thickness-to- 

side ratio of 1:4.  The former is centrally loaded and the latter is uniformly 

loaded. 

A brief description of the elements studied and the associated example- 

problem solutions are summarized in Table 1 and in Figs. 2 and 3.  Not every 

result is plotted in Figs. 2 and 3 because some are far below or above the 

range of the plots.  A total of nine elements has bean tried; these are 

described in the following, together with brief assessment-type comments: 

(a) ELKni:  General quadrilateral element with stress type (L,L), displace- 

ment type (L) . 

This element is suitable for problems of plates or shells of revolution. 

Convergence is fast and computation of tne k matrix is inexpensive. The 

total aegrees-of-freedom per element is 20. 

(b) ELEi-lA:  Triangular element with stress type JJ*tl>)_ .dÜiL d±S^&pjmentiL type _(L_) 

This element does not converge to correct answers within reasonable mesh 

refinement limits.  This element is too "stiff" and is rejected. 

{c)  LLEMB: Triangular element withs tress type (L,L) _and_ jd ijsp_l acement ty^Hi 

To improve L'LEMA, a midpoint node is added to the interior boundary (see 

Table 1). The improvement is not enough. This element is still too 

stiff and is rejected. 

14 
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(d)  Ej-ftMC:  Triangular element with stress type_{E_,L) and displacement type (<^_) 

To make EEEMfl more flexible, midpoint modes are added to every boundary. 

Unfortunately, the stiffness matrix becomes Singular even after the       s 

usual boundary constraining.  This is due to the fact that the number1 of 

unwanted displacement modes which induce no stresse:» within the element 

{these modes are called kinematic modes')  are too many {4 for bending 

only) to be completely suppressed by the imposed boundary corditions       • 

{Ref. 17).  This element is rejected. 

{e)  ELEMD: Triangular element with stress _ tyjae [L,b_)   and d_isp 1 a_cement type _(L,g) 

Another way of making an element more flexible is to reduce the number of 

p's.  From ELEMÖ, the number of ß's is reduced to 10.  This element con- '' 

verges rapidly as can be seen in Figs. 2 and 3.  however, its application 

to future thermal analysis is limited because its stress field is too sim- 

ple. Therefore, it is rejected. i 

{f)  ELEKE: Triangular element with stress _ty_pe (L,j^)_ and displacement type (L) 

To suppress the unwanted modes of ELEMC, a' complete quadratic bending 

stress fielu is used.  Due to; the increase in the number of stress 

parameters ii, it is too stiff and is rejected. 

^  EEEi-lF:  Triangular element with stress type (L,g> raid displacement type   (Q) 

Midpoint nodes are added to ELEME to make it more flexible.  It turns out 

that ELEMF is good for thin plntes but is too flexible for thick plates 

as can be seen from Figs. 2 and 3. 

(h)  ELEMG:  Triangular element _wi_th stress type (E,Q)_and disp 1 aceinent type (o ) 
i 

This element has the advantage ot increasing Mi*» order of w without increas»- 

ing the number of degrees-of-freedom per node.' The convergence is moderate. 

Since only w is quadratic, this element is not suitable for shell problems 

where u, v, and w should be consistent.  Therefore, it is rejected. 

(i)  ELEM2: Four triaiK^ular elements wtth stress type (L,^)_ and displacement 

Four triangular elements assembled into one quadrilateral element.  The 

convergence for a tiiick plate, is very rapid aim the convergence for a 

thin plate is fairly rapid.  This element can be used for general shell 

problems. 

11> 
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Note that for solution, one quarter of the plate was modeled by uniform-sized 

finite elements. The number of degrees of freedom, DOF, indicated in Figs. 2 

and 3 denotes the DOF's for the quarter plate. 

Out of the nine elements tested (see Table 1), only two of them show 

fast convergence.  The triangular-based quadrilateral element, ELEM2, is more 

sophisticated than the quadrilateral ELEM1. Consequently, more computing time 

is needed to calculate the stiffness matrix of ELEM2. Since ELEM2 shows no 

improvement over ELEM1, ELEM1 is used hereinafter throughout this study. In 

the following, ELEM1 is extended to represent a multilayer element. 

2.3 Formulation for Multilayer Flat-Plate Elements 

;     2«3.1 Derivation of Eleitent Stiffness Matrices 

In the present formulation of stiffness matrices for laminated plate 

finite elements, the self-equilibrating stresses for each lamina are initially 

assumed independently. The stress equilibrium conditions for the stresses at 

the interlamina boundaries are ^hen introduced as a finite number of conditions 

of constraint 

A£= o (2.21) 

Using the method of Lagrange Multipliers, the complementary energy functional 

of Eq. 2.7 is modified to 

*c'=:UTHß-f6£+£TA!3 (2.22) 

Again, by setting dir '/äß=0 for each ß, one obtains 
c 

H£-§2+ATA=0 

from which 

Substituting into Eq. 2.21, results in 

AHH65-AHHATX=0 

(2.23) 

(2.24) 

(2.25) 

16 
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or 

£- = (AH-'AT)"(AH-'öi) <2-26) 

Substituting A from Eq.   2.26 into Eq.   2.24 and then substituting the resulting 

tf into the strain energy U, one obtains 

tf = 21 rtVfi - &!f'£(&&£f6ii%) i <2- 27> 
Thus, the stiffness matrix is given by 

K = Cjtfb-CS^K(bhCW)A^G (2.28) 

2.3.2 Stress and Displacement_Assumptions 

Multilayer laminated thick plates often exhibit a severe warping of 

the cross section as a result of the transverse shear deformation effects and 

the discontinuous material properties from layer to layer (Refs. 1, 2, 3, 4). 

To model this warping phenomenon closely, the rotational degrees-of-freedom 6 

and 0 should be assumed to be different for each layer.  Within each layer, 

0 and 0 are still assumed to be a constant in the transverse direction; thus, 
x     y 

Ö and Ö can be represented by the inplane displacements u and v at the ;.pper 

and lower surface of that layer (Fig. 4).  The transverse displacement w is 

still assumed to be a constant in the transverse direction for all layers. 

Therefore, the total degrees-of-freedom at a node consists of one w and (n+1) 

inplane displacements u and v, with n being the number of layors.  The number 

of degrees-of-freedom per node is then 2(n+!)+•!. 

For a typical layer i, the displacements along side 1-2 are: 

tL <* *    h 

17 
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For stress distributions, dn independent set of P.£. (tlie same as that 

used tor ELEM1) should alco be assumed for each layer.  The interface equi- 

librium is achieved by demanding that 

(<& dJ^CS'j) at the top of the ith layer 

—: /0- 0- _- \ at the bottom of the (i+l)th 
— V 2-^'Otf' layer (2.30) 

Equation 2.30 constitutes a constraint on the stress parameters Ü  and can be 

arranged in tne form of Eq. 2.21.  Then the stiffness matrix of a multilayer 

element can be computed using Eq. 2.2Ü. This new element is designed as 

ELEMZ. 

For relatively thin laminated plates and shells, the warping phenomenon 

is not severe and the usual assumption that a plane cross section remains 

plane is still applicable. The corresponding change in the element stiffness 

matrix can be easily achieved by demanding that the nodal displacements u and 

v be linear in the transverse direction and be replaced by,respectively,Ü 

and 0 just as in Eq. 2.1C. Then the total number of degrces-of-freedom per 

node is back to 5 again and tiiis reduced multilayer element will be designated 

as ELEMR. 

2.4 Flat-Plate Evaluation Examples 

Several plate problems have been solved and a comparison of results is 

made with respect to exact solutions or other approximate solutions.  In all 

but two examples, convergence studies are made to establish the reliability 

of the elements ELEM1, ELEMR, and ELEMZ.  Problem descriptions and the finite- 

element modelings uspd arp given in Tablcc 2, 3, and -1 for, respectively, single- 

layer plates and three-layer plates. 

2.4.1 Single-Layer Isotropie Hates 

(a)  Simply-Supported Square Thin Plate (Table 2, Fig. 2) 

This is a problem used in the selection of elements.  The errors 

of the predicted central transverse displacements w for elements 
c 

1, 2, A, D, and F arc plotted for different meshes in a quarter of 

16 
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trie [.»late; advantage is taken of symmetry so that only one-quarter 

of tue plate is moaelod by equal-sized quadrilateral elements.  The 

percentage errors are calculated by comparison with tne exact solu- 

tion of Kef. lo.  From Fig. 2, it is seen that tiic error diminishes 

very rapiuly ana tnat KLEM1 provides somevnat superior results. 

(b) C1 ampod_S<njare Thin Plate (Table 2, Fig. 5) 

To see whether or not boundary conditions affect the convergence 

of LLEI-Jl predictions, a clampcd-plate problem is solved.  A plot 

similar to tnat of Fig. 2 is presented as Pig. i> and shows fast 

convergence.  Coi.iparison is based on tue exact solution of Ref. Id. 

(c) Clampeu Rectangular Thin Piato (Tab1e 2, Fig. 0) 

3oth a square element and a rectangular element (1:2 aspect ratio) 

for ELEM1 are used to see the effects of a large aspect ratio of 

the element.  The results are compared with the exact solution of 

Kef. Id.  From Fig. 6, it is observed that in both cases the con- 

vergence is fast although the pattern of convergence is reversed. 

*d*  Skewed Simply-Supported Thin Plate (Table 2, Tig. 1) 

Since ELEM1 is a general quadrilateral element, it is not re- 

stricted to rectangular plate problems.  Various solutions {19,20,21] 

of tiie SKewed plate problem identified in Table 2 were collected in 

Ref. 10 and are reproduced here in Fig. 7 together with the present 

ELLMi solutions.  It is seen that the present simple element provides 

solution accuracy ana efficiency comparable to other higner-order 

elements even though the free traction condition at the edge is not 

enforced in the present solutions (tnis enforcement would require 

a special element). 

(e)  Simply-Supported Square Tnic k Jjlate (Table 2, Fig. J_) 

This is also a problem used in the selection of elements.  Com- 

parison of the predicted central displacement is made with the 

exact solution of kef. 22.  IL is seen tnat IXb'Sl converges oven 

faster in tnis case.  This is expected since FLiJf'.l is designed to 

L'J 
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cope with shear deformation and in this problem the shear de- 

formation is indeed important (about 25% of the total deforma- 

tion) . 

The results of the above examples demonstrate the reliability of KLLfll 

for isotropic {-lutes.  Since the present stuuy is mainly intended for com- 

posite plates, the above results can only be regarded as a good start, anu 

further evaluations have been carried out as discussed in the following. 

2.4.2  Two-Layer Plates 

Pour problems of two-layer plates arc solved.  The ELEMR element is 

used for the first three, since they involve very thin plates with negligible 

warping.   For the last one, which is a thick plate problem, ELEMZ is used. 

*a*  Clamped Cross-Ply Rectangular Thin_Plate (Table 3^_ Jig. 8) 

A clamped-edge rectangular plate consisting of two layers of 

fiber-reinforced composite materials with orientations of 0°/90° 

with respect to the positive x-axis is uniformly loaded.  The 

central deflection is calculated using ELEMR for the same plate 

with or without the assumption of negligible shear deformation 

effects; since the plate is indeed very thin (with a side-to- 

thickness ratio of 1:100), the two present deflection predictions 

differ by only 1% and are both very close to but slightly larger 

than tiic CPT (classical laminated plate theory) approximate solu- 

tions of Rcf. 23. 

(b)  Clamped Cross-Ply Snuarp Thin Plntp (T*hln 1.. Fig. 9) 

As indicated in Fig. 9, this problem is solved twice using ELEMR. 

In the first solution, the whole plate is oriented in the usual 

v/ay, but in the second solution, it is rotated 45° so that the 

material axes are no  longer parallel to the reference coordinate 

axes.  The purpose is to make sure that the transformation of the 

compliance matrix nas been correctly programmed, since both solu- 

tions should be tiie same if the transformation is correct.  Indeed, 

these two solutions are identical and converge very rapidly in 

20 
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comparison with the CPT solution of Ref. 23. 

(c) Clamped Angle-Ply Square Thi»_p1*^e. (Table 3, Fig. 10) 

The problem considered is similar to the previous one but the 

fiber orientations are + 45°.  Again, the two solutions of 

LLFHR are identical and converge rapidly; that is, to within 5% 

of the CPT solution of Ref. 23.  It should be noted that the 

CPT solution tends to give less accurate predictions for 

angle-ply problems because tne distortion of the plate is more 

severe than that of the cross-ply problems.  Hence, the 5% dif- 

ference here can be attributed largely to the error of the CPT 

solution. 

(d) Simply-Supported Angle-Ply Square Thick Plate (Table 3, Fig. 11) 

To investigate the shear deformation effects, a thick-plate prob- 

lem is solved using ELEMZ for different orientations of the two- 

layer angle-ply.  The present solutions differ from the approximate 

solutions of Ref. 24.  Again, the difference can be attributed to 

the error of the approximate solution since other cases tested in 

Ref. 24 are also less accurate for thick laminated plates. Because 

of the shear deformation effects, the central deflections are 

approximately doubled compared with that for the case of zero 

transverse shear deformation.  It should be pointed out that 

studies of this kind will assist the designer in the selection 

of the appropriate material orientations to fulfill certain specific 

dt.'Si<jii Ouj';CtiVC5. 

2.4.3  Three-Layer Plates 

(a)  Infinite Cross-Ply Plate with Sinusoidal boading 

(Table 4, Figs. 12a-12u) 

The problem of an infinitely long thick plate loaded sinusoidally 

in the short direction and simply-supported along the two edges is 

a  two-dimensional plane-strain problem and can be solved exactly 

according to elasticity theory as shown in Ret. 1.  Using the 
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present finite-element method and F.LEHZ, this problem is solved by 

putting a uniform mesh in one strip in the short direction since 

the solutions are independent of the long-direction coordinate. 

The displacement and stress predictions are very close to those 

of the exact solution as can be seen in Figs. 12a through 12d.  It 

is observed that the other assumed displacement finite-element so- 

lution (Ref. 5}, which also takes transverse shear deformation ef- 

fects into account: (1) does not give accurate detailed predictions, 

but only average values of cross-section rotation and normal 

stresses, and (2) is very close to the CPT solution, which does not 

take shear effects into account at all. 

(b)  Simply-Supported CrossHPly Platje (Tables 4 and 5, Fig. 13) 

This finite-dimension problem is solved exactly in Ref. 2. 

Two examples with different aspect ratio and thickness ratio 

are given here (Table 4, cases hi and b2; both are solved using 

LLEM2.  The first one is a moderately thick rectangular plate 

under bending; the maximum displacement and stress components 

predicted by the method are within 2% of the exact solution [2] 

as can be seen in Table 5.  The second example is a thick square 

plate under bending; the stress and displacement distributions 

at crucial sections are plotted in Fig. 13.  Also plotted are 

solutions obtained by using a 3-dimensional assumed-displacement 

finite element [6]; it is seen that the present method gives prac- 

tically the same accuracy with many fewer degr^es-of freedom 

(225 ÜOF vs. 990 DOF). 

2.5 Application to Shell Problems 

2.5.1 Transformation for Single-Layer ^lement£ 

In the application of flat-plate elements to shell problems, it is 

necessary to transform the element nodal degrees-of-freedom, which are in 

clement coordinates, to a common or global nodal degree-of-freedom system.  As 

discussed in Ref. 25, the transformation can be expressed in the following form: 
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[u] 
* 

K 

<^ f= 

% 

k 

CosiXJ) Los(X.Y) Cos(X.Z) 

cos(r.x)CDs(Y,r; Gscr.z) 

Cos(Z.3cKo5a,Y)6»s(Z,Z) 

0 

0 

CosiX.X)  CbSiX^T) CosCX.Z) 

Cos(Y,X) Gstf,Y) CDSCY.ZA 

FUMrMT 

X 

u 
y 

% 
; 

ft 

or 

8 = Isx6 % 

NODE" 

(2.31a) 

(2.31b) 

where the "barred" system is the common (global) nodal system. 

If the z-axis of the common nodal coordinate system is chosen to be in 

the direction of the outer normal of the shell surface (Ref. 15), then the 

contributions of cos(x,z) and cos(y,z) in the last column are small compared 

with other terms and can be neglected.  The resulting transformation is a 5x5 

transformation and the nodal degrees-of-freedom consist of only u, v, w, 0 , 

and 0 : 

U 

V 

Cos(X.x) Cos(X.Y) CosOC.Z) 

Cos(Y,x; 6>s(Y,Y) Cos(r.z) 
Cos(Z.X) C*(Z,V) 6>s(Z.Z) 

V 

or 

ELEMENT 

%    = Ts,5 0 

The corresponding element stiffness matrix is 

R=TTKT 

XX 

0 V 

<w > 

Gstt.V CasH.r) Bt 

US(Y^) c<fAr,r) % 
~ MODE (2.32a) 

:2.32b) 

(2.33) 

Once k  is obtained from Eq.   2.33,   this transformed element stiffness 
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matrix can be assembled into a system stiffness matrix K, as usual, and the 

remaining procedure is the same as that for plate problems. 

The above transformation is applicable to ELEMl and ELEMR. 

2.5.2 Transformation for Multilayer Elements 

Since the nodal displacements of a multilayer element are completely 

represented by the interlayer displacements u, v, and transverse displacement w, 

instead of u, v, w, 0 , and 0 , the former should be expressed in terms of the 
x      y 

latter before a transformation can be carried out.  This is accomplished by 

defining an equivalent set of nodal degrees-cf-freedom, which consists of the 

displacements u, v, and w at the nodal mid-thickness station of an element and 

the rotations (0 ). and (Ö ). of each layer of the element at a nodal station 
xi      y i 

(see Fig. 14). 

The relation between this new set of degrees-of-freedom and the old one 

can be put in matrix form as 

V 
w 

u'} s 

V, 

U* 

v, 
< : r    ~ 

«» 

K 
w\ I 

T< &e 

9. xi 

a X* 

(2.34a) 

or 

For a typirai   three-layer case as shown i 

(2.34b) 

"     ig»   j-* /   the matrix T ~  ASJ 
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/ 0 0 0 -d, 0 -A 0 0 

0 / 0 4 0 d2 0 0 0 

/ 0 0 0 0 0 -d> (0 0 

T«e = 
/ 

/ 

0 

0 

0 

0 

0 6> 

4 
0 

0 

d3 

0 

0 

0 

0 

0 / 0 0 0 -d3 0 0 0 

/ 0 0 0 a 0 d3 0 4 
0 / 0 0 O 4 0 -d* 0 

0 0 1 0 O O 0 0 £ 

(2.35) 

Then the transformation of this new local system to the common (global) 

system is 

U 
V 
W 

T •3x3 

T, 2X* 1 

n 

0 

- -. L 

T2 2*3 

u 

fa 

or 

5• - lef I 

(2.30a) 

(2.30b) 

M^I 



-- - - ••-.l|BBBBfff»WW»?«^^ 

where the submatrices T. , and T   are the submatrices of T   of Eq. 2.31. 
~/3x3    "2x3 ~5x6 

The overall transformation matrix is found by combining Eq. 2.34 and 

Eq. 2.36: 

t= lit ft =1**^0% % 
or   e - T -- C 5      Iff $ 

x» = T -r - (2-37) 

The transformed element stiffness matrix k is then 

The above transformation is applicable to ELEMZ. 

2.6 Shell Evaluation Examples 

Thin cylindrical shell problems are solved first.  Then conical shel s 

of various thickness are solved to demonstrate the effect of transverse shear 

deformation.  The problem data and the finite-element modeling employed are 

given in Tables 6 and 7. 

2.6.1 Thin Cylindrical Shells 

(a) Pinched Cylindrical Shell (Table 6, case (a); Fig. 15) 

Both analytical and finite-element solutions [16,20,26] are 

available for this problem and are collected by Wolf in Ref. 16. 

Although the present solution using ELEM1 does not enforce the 

free traction condition on the simply-supported edges, its ac- 

curacy is still comparable to other solutions as can be sepn in 

Fig. 15. 

(b) Cylindrical Shell under Ring Load (Table 6 case (b); Fig. 16) 

An analytical solution for this problem is given in Ref. 27. 

Since the ring load is axisymmetric, this problem can be re- 

duced to a one-dimensional problem and an extensive convergence 

study can be performed thriftily.  It is seen in Fig. 16 that the 

deflection under the ring load as predicted with ELEMl flat-plate 

elements converges rapidly to within 5% of that of the analytical 
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solution.  An increase in the number of elements eventually 

further reduces the error to within 2%. 

2.6.2 Conical Shells 

To investigate the transverse shear deformation effects on a shell, 

several conical shell problems are solved with ELEM1 and ELEMR flat-plate ele- 

ments.  They all have the same loading and geometry, except that they differ 

in the thickness and material constituents.  The chosen loading is axisymmetric 

in order to minimize the computing cost* 

(a)  Isotropie Conical Shells (Table 7, Case (a); Figs. 17 to 20) 

First, a ahell with thickness = 0.025 in. is solved.  Com- 

parisons of displacement and moment distributions are made 

in Figs. 17a and 17b with those predicted by another higher- 

order finite-element solution (SABOR 4, Ref. 28).  In using 

45 elements along the meridian, the present solution is, within 

plotting accuracy, the same as that of SABOR 4.  The latter does 

not take transverse shear deformation effects into account. 

Next, the thickness is increased to 0.1 in. (Figs.18a and 18b) 

and then to 0.5 in. (Figs. 19 and 20).  There are still no ap- 

parent transverse shear deformation effects.  However, when 

the thickness is increasei to 1 inch, which corresponds to a 

thickness-to-radius ratio = 1:15, pronounced transverse shear 

deformation effects, reflected by the difference between the 

present solutions of ELEMl and those of the SABOR 4, are ob- 

served as is evident from Figs. 19 and 20-  For a thicker 

shell, it can be concluded that transverse shear deformation 

effects must be taken into account in order to obtain any 

meaningful answer. 

*b•  Sandwich Conical Shell (Table 7, Case (b); Fig. 21) 

Since no other solutions have been found for comparison, only a 

displacement distribution is presented for this example.  The 

sandwich snell is treated as a three-layer shell, and ELEMR is 

used«  The displacement plot in Fig. 21 shows a rapid die-out of 
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the loading effect.  A comparison with Fig. 17b shows that the 

edge deflection of the sandwich shell is smaller than that of 

an isotropic shell, which uses roughly the same amount of materi- 

al as is used for the skin of the sandwich shell (0.025 in. 

thick vs. 0.02 in. thick).  This clearly demonstrates the effec- 

tiveness of the sandwich structure in increasing the stiffness 

of the shell. 

(c)  Two-Layer Conical Shell (Table 7, Case (c); Figs.20 and 22a-22b) 

To simulate some missile-type structures, a glass-phenolic coating 

layer is placed on top of an aluminum base layer and this two-layer 

shell is analyzed using ELEMR.  The normal displacement of this 

two-layer shell is plotted in Fig. 20 together with solutions for 

other similar conical shells.  Since the coating layer is rela- 

tively soft, the deflection is larger than that of a similar but 

isotropic shell of 1-in. thickness.  The maximum meridional normal 

stresses in both layers are plotted in Fig. 22a.  As expected, the 

maximum stresses occur at the two outer surfaces of the shell. 

The maximum circumferential normal stresses are plotted in Fig. 22b. 

They occur at the interlayer surface and at the inner surface of the 

shell.  The maximum stress in the base material is more than three 

times that of the coating material, due to the larger stiffness of 

the base. 

It is clear that such a detailed description of the stress distributions 

will be of definite value to a designer who needs this basic information to de- 

in wiwiSbüuu utiC given lüäuin^< 

2.7 Summary and Comments 

A method of analyzing fiber-reinforced laminated plate and shel1 struc- 

tures under static loading has been developed.  The hybrid stress finite-element 

nethod has been chosen as the mathematical model to analyze this complex problem, 

Because of the versatility of the hybrid stress method, problems like transverse 

shear deformation effects £.nd multilayer la..iinates are dealt with easily. 
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The development of this basic analysis tool has been carried out step 

by step.  First, several candidate sinyie-layer-plate elements have been 

studied.  Based on two test problems, a quadrilateral clement (ELEM1) has been 

chosen for later use.  Then, an extension to multilayer elements (ELEMR and 

ELEMZ) has been made, and various plate problems have been solved to establish 

the reliability cf the present method. 

Application to shell problems is achieved,through a coordinate trans- 

formation.  Then several shell problems have been solved to demonstrate the 

validity of this transformation and to study transverse shear deformation ef- 

fects on shells. ! 

In addition to the three elements selected for use as described in this 

section, another similar element designated as ELEM3 was developed in the re- 

search effort under this contract and is described in another report [29]*. 

That element is designed for thin multilayer laminated plates.  The only differ- 

ence between ELEM3 and ELEMR is that the former has a single set of stress 

assumptions for tne whole flat plate element regardless of the number of layers, 

wnile the latter has an independent stress assumption for each layer of the 

flat-plate element,  studies reported in Ref. 29 show that for multilayer plates 

with thickness-to-side ratios ranging from 0.01 to 0.25, ELEM3 provides better 

results than does ELLi-R.  The errors of the results obtained by using ELEM3 are 

uniformly less than those of ELEMR.  However, it should be stressed that for 
i 

thick laminates with a typical thickness-to-side ratio equal to or greater than 

about 0.1, the multilayer;element ELEMZ should be used to avoid excessive 

error; for such thickness ratios, ELEM3 and ELEMR are both deficient. 

* 
In Ref. 29, both ELEMl and ELEMR of this report are referred to as ELEM1 

since they nave the same number of degrees-of-freedom per element. 
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SECTION 3 

VIBRATION ANALYSIS 

3.1 Vibration Analysis by the Hybrid Stress Model 

As is seen in the previous section, the static hybrid stress finite- 

element analysis takes the same form as does the displacement finite-element 

analysis; that is, each element is represented by an element stiffness matrix 

and the final unknown parameters are the element nodal generalized displace- 

ments.  In other words, the hybrid stress model can be viewed as just an alter- 

native way of deriving a stiffness matrix.  Along this line of thinking, it seems 

that analogous with, but somewhat different from the consistent mass matrix 

approach used in the displacement finite element dynamic analysis, a mass 

matrix for the hybrid stress model can be constructed by using a displacement 

field for the interior of an element based on a suitable interpolation of the 
i 

assumed boundary displacements of the hybrid stress element, and by evaluating 

the corresponding kinetic energy of the element in terms of the generalized 

nodal velocities, thereby identifying the associated mass matrix.  This was 

done by Dungar, Severn, and Taylor [30] for a general triangular flat-plate 

element and a right-angled triangular flat-plate element, and later by Dungar 

and Severn [31J for a triangular plate element with variable thickness.  Numeri- 

cal examples in both Ref. 30 and Ref. 31 showed convergence of the predicted 

natural frequencies.  This approach was extended to treat a cylindrical shell 

element by Henshell, Neale, and Warbuton [32], and to accommodate a triangular 

flat-plate element and a rectangular flat-plate element by Neale, Henshell and 

Edwards [33J. 

An alternative approach is provided by Tabarrok [34,35] who formulates 

the vibration problem according to Toupin's Principle [36] with the impulse 

tensor and velocities as field variables.  This formulation is consistent with 

the hybrid stress model; accurate frequency predictions are obtained by 

SakagUchi for plate vibration problems [37].  Unfortunately, this approach pro- 

duces neither a mass matrix nor a stiffness matrix, but rather a frequency 

matrix; the zeros of its determinant arc the frequencies of a system.  As a 
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result, this approach is not applicable to transient dynamic problems. 

Recently, efforts have been made to develop a variational principle to 

justify the approach of interpolating boundary displacements of an element as 

a legitimate way of obtaining a mass matrix [38,39] so that the conventional 

formulation for stiffness and mass matrices can be safely adopted in a hybrid 

stress finite-element dynamic analysis.  In the following, a brief description 

of the derivation of a mass matrix from a variational principle for the hybrid 

stress model is given. 

Consider a functional in the form of a modified Reissner principle 

[39,4t'j for the free vibration of a continuum, 

"dVn (3.1) 

where 9V refers to the boundary of the region V , ö.. and u. are defined 
n n  13     1 

within the interior volume V of the element and on 3V , and T. and "u. are 
n nxi 

the boundary traction and boundary displacements, respectively.  One can 

recognize that one of the equations obtained by setting 6TT  = 0 is that 
mR 

Ti = tfj >j (3.2) 

along the element boundary Dv , where v. is the direction cosine on c)V .  Thus, 
* n        3 n 

if 1. in Eq. 3.1 is replaced by o..V. and integration by parts is carried out 

for the term l/2a..(u. . + u. .), the following functional is obtained: 

Note that only three field variables are involved: 0.. and u. in V , and u. 
13     1    n      1 

on 3v . 
n 

Assume that the stress distribution in the interior of the element 

may be written as 

(3.4a) f-ed 
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and that the displacements along the boundaries of the element are assumed to 

be expressed as 

U  = L & (3.4b) 

as before, and represent the displacement field u in the interior of the 

element by 

U, Ä Ü & (3.5) 
where N is a "suitable" interpolation function which relates u to the nodal 

generalized displacements q.  Substituting Eqs. 3.4 and 3.5 into Eq. 3.3 re- 

sults in 

where H and £ are the same as defined in Eq. 2.6, and 

(3.7) 
7n - J* eN/TMdK 

with P' representing the derivatives of P (c. . .). 

The stationary conditions of TT  with respect to variations of ß then 
mR *»• 

yield 

-Hg + (§-J)f = 0 (3-a) 

By solving for ß from Eq. 3.8 and substituting into Eq. 3.6, one obtains 

7U = i(if>a-iiT2i) o.g. 
where 

K   = ((7 —X>) H ( G—P)   = element stiffness matrix 

(3.10) 

*l = L   VhfktdV =  "hybrid-rational" mass matrix 

If   t. ie  stress   function  P  is   chosen  such   that 

tfljj    =   0 (3.11) 

then L)  is  zero and  the clement  stiffness matrix k  in Eq.   3.10 reduces  to 

6 = STfcf6 ,j.„, 
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which is the stiffness matrix of the hybrid stress model.  From Lq. 3.'J, the 

following equation is obtained by taking 6ir  = 0 since Oq is arbitrary: 

Z. [ &S + •£ ) = o (3.13) 

The element nodal generalized displacements q can be connected to the ->- 
global generalized displacements q* by 

£ = J{f* I (3.14a) 
Note also that 

I^ lit* I* (3'14b) 

where T  . is a transformation matrix relating q to q*. 
~qq* J <& ~ 

Applying Eqs. 3.14a and 3.14b to Eq. 3.13, the following equations of 

dynamic equilibrium of the non-forced complete assembled discretized structure 

is obtained: 

M %   + K £* = 0 (3.13) 

where M and K represent, respectively, the mass matrix and the stiffness matrix 

for the complete assembled discretized structure referred to the global system. 

It is seen that the final governing equations of free vibration analysis 

are of the same form for both the displacement and the hybrid stress finite- 

element model.  For fre- vibration analysis, one may assume that 

%     S ~W t (3.16) 

where co is the natural frequency of the system.  Thus, the following familiar 

eigenvalue problem res^lr«; fron Her. 1.1S: 

( K - oo2 H ) %   = o 
3.2     Mass Matrices for an Element 

(3.17) 

iiy resorting to the modified Reissner principle expressed by Eq. 3.1, 

the procedure explained in Subsection 3.1 shows how one may obtain both the 

hybrid-stress stiffness matrix and a "hybrid rational" element mass matrix. 

Although tiiis mass matrix is "rational", it is not consistent in the sense 

widely understood in connection with the finite clement assumed displacement 

method.  In the latter, the assumed displacement field is used to obtain the 
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element stiffness matrix, and a velocity field consistent with the assumed 

displacement field is used to represent the kinetic energy of the system there- 

by identifying a consistent mass matrix. In the hybrid stress model on the 

other hand, the displacement field utilized for constructing the kinetic energy 

to identify a rational mass matrix is not employed in any sense in the de- 

termination of the element stiffness matrix given by Eq. 3.12. 

In addition to the "rational element mass matrix procedure" explained 

in Subsection 3.1, one may also construct a lumped mass matrix by commonly 

used procedures, or from a special case of the present procedure.  For ex- 

ample, ;*  the displacement field interpolation function^ of Eq. 3.5 were 

assumed to be such that the displacements within the tributary region of a 

particular node are identical to the displacements of that node, then the so- 

called lumped mass matrix [41] results.  For the quadrilateral element con- 

sidered in this study, the tributary region may be defined, for simplicity, as 

one-fourth of the total plane-area of the element regardless of the shape of 

the quadrilateral element.  Then, for the single-layer element ELEM1, the 

following diagonal-lumped mass matrix m   is obtained: 

B1-L&-7 

d ! 

[3 
+ "]-cf 

fll . h > 
I" 
III 

(3.18) 
T T 

where A = plane area, p = density, (q.)  = (u.,v.,w.O .,6 .) , i = 1,2, ... 4, 1 1     1     1 xi    yi 
and  fchr   diaTcaial   terms   »«  -'   •>»•"   '»     «     »     "     w   *   i.H *h  u     =  (**'*  AV. —rr~"~ • —- 4.v..1...1,..3...3, x   j 

and H = i        Z*AZ. 
3  »Ah/2 

J-h/Z 

Next, consider the development of a hybrid-rational mass matrix for 

ELEMI.  Since the element boundary displacements are assumed to be linear for 

ELEMl, a convenient and suitable interpolation for U  would be a bilinear ex- 

pansion in terms of a pair of transformed coordinates (£,n) : 
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"• = £ ((^+^^)NtJ 
L = / 

v = M^-*0*iM] 
1=1 

w = t(*iNi) 
1=/ (3.19) 

where 

(3.20) 

N2= (1-7)1 

The relations between the original coordinates (x,y) and the transformed co- 

ordinates (£,n) arc (see Fig. 23): 

x   = t %i Ni 
(3.21) 

l-l 

Having Eq. 3-, 1.9 (which is the equivalent of Eq. 3.5), the mass matrix of ELEMl 

can be obtained by substituting Eq. 3.19 into Eq. 3-7 and performing the neces- 

sary integrations.  The resulting mass matrix will be designated as m    and 
1""IJK 

will be called a hybrid-rational (HR) mass matrix in the sense that the inter- 

polated displacements within the element conform with the element boundary 

displacements and is derived from an established variational principle. 

To derive lumped and iiR mass» iicatrices for the multilayer ,^,~*-  r-T PM7 

it is only necessary to note that for each layer the above-derived mass matrices 

m 
1-L 

and m 
1-HR 

are applicable.  However, the following transformation 

«L 'os   o   o.s    o    o uL 

Vl 0     OS     0    05     0 Vt 
w > = o    o    o    o    i i UiH 

6* o   '4  o  -if* 0 ¥*•! 

% c'4 ° VK °   ° w 
i = 1, 2, (3.22) 

3r; 
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?e = lez $* (3.23) 

is needed to transform the nodal displacements of ELEMl to that of ELEMZ. 

Then the complete mass matrix of ELEMZ can be obtained by summing the trans- 
T 

formed lumped or HR mass matrix T  in T  for each layer through the thickness 

in the same way as individual element stiffness matrices are assembled into a 

system matrix.  The corresponding mass matrics for ELEMZ will be designated 

as m   and m   , respectively. 
^Z—L     ^Z- HP. 

As for the reduced multilayer element ELEMR, the corresponding mass 

matrices m    and m    can be obtained by reducing m   or m    in the 
•>» R*"L      R—HR Z~L   ,^Z—HR 

same way as its stiffness matrix is reduced from that of ELEMZ (see Sub- 

section 2.3.1) . 

3.3 Plate and Shell Evaluation Examples 

To test the reliability of the above-developed mass matrices, several 

examples have been solved and the results compared with other known solutions. 

A computational scheme making use of the Sturm sequence property [42,43,44] has 

been adopted to solve the eigenvalue problem of Eq. 3.17. The computer program 

developed is capable of finding vibration frequencies and mode shapes for any 

number of vibration modes.  A brief description of the solution scheme is con- 

tained in the Appendix at the end of this report. 

3.3.1 Single-Layer Thin Plates 

Doth the lumped mass matrix m   and the hybrid-rational mass matrix 
/%.1"L 

mn uo of the single-layer element ELEMl are used in solving the following two 

problems of classical thin plate vibrations: 

(a)  Simply-Supported Square Thin Isotropie Plate (Table 8, Fig. 24) 

The dimensions and material properties of the plate can be found in 

Table 8, together with the numerical results.  The single-layer ele- 

ment ELEMl is used and the lowest frequency found by using m   and 
«• i — L 

m    is plotted in Fig. 24 for various finite-element modelings; with 
„l'HK 
uniform meshes up to üxö in a quarter of the plate; shown is the per- 

centage error for each of the present predictions of the lowest 

3G 

miM 



_(p«wraip»www»»•' wi-vwn^»„w««iju»«,.  ..,.*- •    •TWi•«•»TnwTr«--'"i"'•''•"'""w  ~'-'"   •' '•'••'.«•«• .i,iJii»i^.«Jwi«'..>M»!ii»»^npi^w        ininwi'*W9!mw|i|iii.Hii ii"^•JWAlK^kfnainitpamHnpflllglNHmHISIJII 

frequency in comparison with the exact values reported in Ref. 45. 

For this problem, the lumped and the hybrid-rational nass matrices 

give almost the same degree of accuracy, except that the errors are 

opposite in sign. 

(b) Clamped Rectangular Thin Isotropie Plate (Table 9, Fig. 25) 

A clamped rectangular plate of aspect ratio 1:2 with the material 

properties the same as that of the previous example has been 

analyzed.  Again, both lumped and HR mass matrices have been tested; 

the results for the lowest predicted frequency are plotted in Fig. 25 

and also are contained in Table 9.  Comparisons are made with the 

exact solution of Ref. 45.  It is shown in Fig. 25 that for a given 

number of degrees of freedom (DOF), the HR mass prediction is 

superior to that obtained by using the lumped mass matrix. 

Since by using the present solution scheme, the computing effort for a 

system with a diagonal mass matrix is not very much reduced when compared 

with one which uses a mass matrix which has non-diagonal terms, in subse- 

quent calculations only the HR mass matrices will be used so that better ac- 

curacy can be obtained. 

In the examples presented thus far, only the lowest frequency has been 

computed.  To test the ability of the solution scheme for higher modes, the 

following problem has been solved: 

(c) Simply-Supported Rectangular Thin Isotropie Plate (Table 10) 

A simply-supported rectangular plate of the same dimensions and 

material properties as that of example (b) has been analyzed for 

symmetrical modes of vibration.  A quarter of the plate was 

analyzed by applying ELEM1 (with the HR mass matrix1 to two differ- 

ent uniform meshes 6x12 and 8x8.  The first seven frequencies of 

symmetric nodes of vibration computed and the errors calculated by 

comparing with the exact solution [45] are shov/n in Table 10.  As 

can be seen in Table 10, better predictions are obtained for the 

lower frequencies.  This is expected since the accuracy depends 

on the ability of the elements to model the proper deformed 
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shape of the structure, and higher nodes involve higher wave numbers 

of deformation; i.e., more complicated mode shapes.  Thus, better 

modeling is provided by the 6x12 mesh than by the 3x8 mesh for the 

mode designated by 5-1 in Table 10, for example, because more ele- 

ments are put in the direction which lias a wave number equal to 5 

(that is, along the long side).  The opposite is true for mode 1-3 

in Table 10 since nighcr wave numbers now appear in the other (short 

side) direction. 

In summary, tue better solutions of the two meshes for the first five 

symmetric modes produce no error in predicted frequency larger than 4%. For 

higher modes, appare itly, more elements are needed. 

3.3.2 Two-Layer Thin and Thick Plates 

Since two-layer laminates are usually "unbalanced", the extensional 

mode and bending mode of vibration are coupled.  The following two problems 

are chosen to demonstrate the ability of ehe present finite-element method to 

predict the lowest frequency of vibration of unbalanced plates. 

(a)  Clamped Cross-Ply Square Thin Plate (Table 11, Fig. 26) 

For thin multilayer plate problems, ELEIIR can be used.  The present 

problem is described in Table 11, together with the results of the 

lowest predicted frequency for each of various modeling meshes.  Com- 

parisons are made with the CPT solution of Ref. 22 which docs not 

include transverse shear deformation effects.  The present finite- 

element solution converges very rapidly and the small discrepancy 

between the two solutions may be attributed to tiic transverse shear 

deformation effects. 

<b)  Simply-Supported Infinite Strip (Table 12, Fig. 27) 

In Ref. 46, exact elasticity solutions are obtained for two-layer 

cross-ply infinite strips of various thickness-to-span ratios. 

For the finite-element analysis, only one row of elements arranged 

in the short-span direction is needed.  In fact, only eight ELi:;iZ 

elements are used along the half span because of symmetry.  Since a 
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considerable amount of local ucformation of the plate cross section 

is expected, the two-layer thickness is divided into four sublayers. 

Even so, tne finite element predictions of the lowest frequency for 

cue higher tnickness-to-span ratio still are about 20% higher than 

the exact values.  However, as can be seen in Fig. 27, great improve- 

ment is obtained by the present (ELEMZ, HR-mass) finite-element solu- 

tion over (1) the classical solutions and (2) solutions which in- 

clude rotary inertia and in-plane mass inertia but neglect the local 

deformation caused by transverse shear deformation. 

3.3.3 A Simply-Supported Three-Layer Square Plate 

The exact vibration analysis of a three-layer square plate, with each 

layer being isotropic has been done in Ref. 47.  The present finite-clement 

solution uses, ELEMZ the 1IR mass matrix, and a 4x4 mesh in a quarter of the 

plate.  Ho subdivision of each layer is needed. The predicted lowest fre- 

quencies show excellent accuracy, as can be seen in Table 13 for various combi- 

nations of density ratios and shear modulus ratios.  Also included in Table 13 

are predictions by the classical plate theory which neglects transverse shear 

deformation; the latter, obviously does not yield accurate results even for 

only moderately thick plates (total thickness =0.1 side length). 

3.3.4 A Singly-Supported Three-Layer Cross-Ply Cylindrical Shell 

Numerical solutions for both exact and approximate vibration analyses 

of a three-layer cylindrical shell simply supported at both ends have been ob- 

tained by other authors [47,4Sj.  The material properties are given in Table 14. 

In tne present investigation, only the lowest frequency of the axisymmctric mode 

is explored in order to restrict the present computations effort.  As in the 

previous example, only eight elements in a half span are useu.  Both ELEMZ 

and ELEiIR are used and the transformations described in Subsections 2.5.1 and 

2.5.2 are utilized to transform the flat-plate nodal displacements of ELE.MZ 

ana LLEilR into cor.unon shell nodal displacements.  The results for various 

thickness-to-lcngth ratios, together with classical (CST, Kef. 49) , exact  (ET, 

kef. 47) , an^l  upj "oxirvate (RST, Ref. 4o) solutions ire listed in Table 15. 

Excellent accuracy is observed for ELEI1-; compared with t.ie Ref. 47 solution. 
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Even ELEMR, which neglects the local warping of the shell cross section, yields 

fair results — comparable to those of the so-called refined shell theory. 

3.4 Summary 

Both lumped and hybrid-rational mass matrices for elements ELEH1, ELEMR, 

and ELEMZ have been developed.  Because of their better accuracy as evidenced 

by tiie present studies of natural frequencies of vibration for various plates, 

the hybrid-rational mass matrices are chosen for future use. 

Frequency analysis of thin plates shows that FE predictions for lower 

modes of vibration are better than those for higher modes, mainly because the 

finite-element discretization employed models the lower modes more closely; 

finer meshing is needed to improve frequency predictions for the higiier 

modes — a commonly noted fact. The same phenomenon exists for Rayleigh-Ritz 

approximate analysis. 

For very thick plates (whose thickness-to-side ratio is in the order of 

one) subdivision of each layer is needed to model the local deformation closely. 

Analyses of a three-layer plate and of a three-layer cylindrical shell 

in the present study show excellent accuracy of the multilayer element ELEMZ. 

The present formulation provides a dependable HR mass matrix which can 

be confidently applied to transient dynamic analysis. 
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SECTION 4 

THERMAL STRESS ANALYSIS 

Since aerodynamic heating and/or other sources of heating may produce 

elevated nonuniform temperatures in aerospace structures, the analysis of the 

attendant effects such as thermally-induced distortions and stresses is of 

interest.  Accordingly the present section pertains to the analysis of thermal 

stresses and deformations in the context of applying the hybrid-stress finite- 

element model ana method. This analysis is developed and applied to several 

simple thermal/structural problems involving either Isotropie or anisotropic 

materials in single-layer or multilayer configurations. 

It is assumed that a steady-state vype of nonuniform temperature dis- 

tribution is known; the attendant static thermal stresses and distortions are 

then analyzed.  In other words, the temperature problem and the elasticity 

problem are considered to be uncoupled. 

4.1 Thermal Stress Analysis by the Hybrid Stress-Model 

For a given temperature distribution, the thermal stress analysis of 

an elastic body by the displacement finite-element model is quite straight- 

forward.  The thermal loading can be transformed into a set of equivalent 

nodal forces by an initial-strain approach [51,52].  For a hybrid-stress model, 

equivalent nodal forces ca.i also be obtained by an initial-strain approach [8]. 

Consider a single element.  The complementary energy functional to be 

minimized in the presence of a temperature distribution over the entire element 

is shown in Ref. 8 to be 

^c = J(iSijM(r£j<rfc,+ i*q*ii)fr-jTiUidA C4#1J 

where z   . . is the initial strain obtainable by the following formula : 
oij 

4i 
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(4.2) 

In Eq. 4.2, a , a , and a are the coefficients of linear thermal expansion 

in the respective three principal directions of the material. AT is the tem- 

perature lise from a stress-free temperature state, and £ and m are the plane 

direction cosines between the material axes and the element axes. In short, 

Eq. 4.2 is nothing but a strain transformation formula that relates the initial 

strains in the material axes to chose with respect to the element axes. 

The stress-strain relation in the presence of thermal initial strain is 

£-Li  = ^M^ijKt  "*" £*tJ (4.3) 

The inver3ion of Eq. 4.3 leads to the following expression for the stress 0\. 

which corresponds to the toi-ol strain e. .: 

where 

ö"ü = (Tu + GVij (4.4) 

$Olj -    CijKl £oKf 4.5) 

Here a .. is the stress corresponding to the initial strain and a.. is the 
oij 13 

actual stress.Since usually a linear distribution of o.. in the transverse 
iD 

direction can be assumed for plate or shell structures, it follows that o!. is 
ID 

linear in the transverse direction.  The actual stress o. ., however, may not be 

linear in the transverse direction, since o .. may not be linear: 
013 

(4.6) 
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In the following, equivalent nodal forces will be derived for the multi- 

layer element ELEMZ.  The equivalent nodal forces for ELEMR and ELEM1 can be 

obtained directly from those of ELEMZ by appropriate reductions of the nodal 

degrees of freedom. 

For the stress field, one may assume that 

? =•" ES * S& " L?&> ' (4.7) , 

for each layer, where Pß is the part of a!. that has unknown parameters ß, 
i i '    i 

P L> is the part of a!, that is necessary to balance the initial stress P ß , 
~t-t       ^       ij • -OM3 

so that all together the actual stress o satisfies the equilibrium equations 

of elasticity. 

Note that one could make P. £ identical to P ß . ' Then the resulting 
~cM: :~o~o 

stresses a. ,  would be represented only by Pß, whose in-plane stresses are 
ID 

linear in z.  Since, in general, the actual in-plane stresses may not be 

linear in z, this would be too restrictive.  Thus P ß is not made equal to 

P ß , as will be seen later. 
~o^o : 

For the boundary displacements, one may assume that 

U =  L ft (4.8) 

as before.  The functional of Eq.  4.1 becomes, i'n matrix notation. 

(4.9) 
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In Eq. 4.9, the matrices R, R , and R are obtained by specifying boundary 

coordinates in the function P, P . and P , respectively, of Eq. 4.7. 
*- ~t    -~o 

By expressing 

(4.10a) 

(4.10b) 

6i = J RTLdA 

as before,  and defining 

Ht  = J P^S Pt ^ 

the functional in Eq.   4.9 becomes 

In Eq.  4.11,   the constant terms fß    P^ SP ß    dV and fQ    P    SP 3    dv are "-'•' '    ' ~t -*st —~t~t ~o     o -~~o~o 
dropped, since they have no contribution upon taking ,r^riations of TI   . 

c 

Since a multilayer element is being considered, the interlayer equilibrium 

of stresses will lead to a set of constraint on ß (see Subsection 2.3.1): 

(4.11) 

Aß=B (4.12) 

Upon introducing the Lagrange multiplier A, a new functional is formed by 

combining Eq. 4.11 and Eq. 4.12t 

7T' - nc  + x
r(A(3-8) ;4.i3) 

Taxing the variation of TT' with respect to 0, one ubiaias 

or 

Substituting ß of Eq. 4.14 into Eq. 4.12, one obtains 

(4.14) 
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or 

AH",(S^Ht^-ATA)=8 

A = (AJfVr^Aff'Q^-AHX^-g) (4.15) 

Substituting 3 and A back into Eq. 4.13, the new functional 71'  now contains 
~ c 

only q: 

HiTr'*    --1/ 
^c = -i 8 lGTyHö-a.y 2 'H'ÄS^ 

- $WAT(AHX)"' (8+ AH"'H«(V- fiCnh-GhTHt fit > 

+ ?\'ft 
(4.16) 

Again, a constant term in TT' has been dropped.  Finally, by taking the varia- 

tion of ir* with respect to q, one obtains 

.^tvJ/,,1-1/ 

(4.17) 

Thus, the element stiffness matrix k^ of Eq. 2.28 remains valid and an equiva- 

lent element nodal thermal force vector: 

j = tfH'%ßt~tiu£(AUWi(B+AH'Hißt) + Äft-Gt fc 
(4.18) 

is obtained. 

4.2 Modeling of a Temperature Distribution 

The equivalent tnermal loading vector derived in Subsection 4.1 depends 

on the temperature distribution of an element.  In theory, any given function 

of temperature distribution can be used in Eq. 4.2 to yield a vector of initial 

strain and eventually the vector P |3 in Eq. 4.7.  That, however, would intro- 
o o 

duce difficulties in evaluating Eq. 4.10b.  Since the basic stress distribution 

4i> 
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represented by P3 in Eq. 4.7 is only linear in x and y (see Subsection 2.3.2), 

higher-order descriptions of temperature for the equivalent nodal force calcu- 

lation may be essentially futile unless higher-order stress-distribution 

functions are used in developing the hybrid stress finite-element properties. 

Therefore, the following simplification in temperature-distribution representa- 

tion is adopted in this study.  A given arbitrary temperature distribution 

AT (x,y,z) for any one layer of an element is modeled by a simple distribution 

AT(x,y,z): 

ÄrU.y.z; = T, +Tz*+T3y + t(T4 + T5x+T6y) 

+ Z2( T7 +T8* tT^y) (4.19) 

which is parabolic in z and linear in x and y.  The coefficients T , T , ... 

are determined by minimizing the square errors of surface-fitting AT at the 

12 corner points of that layer of an element (Fig. 28a). 

Equation 4.19 can also be expressed in terms of temperatures in the 

bottom (T, ), middle (T ), and top (T ) surface of that layer (see Fig. 28b) 
D m t 

I+T>x+T3ys "Tv». + T„u* -M^y 

T« + T5x + T6y~ {(rTtrTb()+rTt2-TJ>i)^+/Tt3-Tw)y] 

T7+ Tß*+T9yi= •^f<TtrTi|-2T»)+(Tti-TJpl-2B»)X 

(4.20) 

where h is the thickness of that particular layer. 

Thus, the minimization of errors in AT(x,y,z) can be carried out for the 

three surfaces separately.  Denote by T . the actual temperatures at the four 

corner points for any one of the three surfaces calculated from the original 

AT (x,y,z), and denote by T. the approximate values calculated from Eq. 4.19 

and Eq. 4.20.  Then the square error E of the temperature description for that 
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surface xs 

Er= is\-fii 
l-l 

and 

Ti = TS(tT52^-fTS3yi 
s = b, or in, or t 

(4.21) 

(4.22) 

where x. and y. are the corner coordinates of the element, 
l     l 

To minimize £   : 

6T< *=£<- 
SI i=l 

^(T0£-Ti) = 0 

W   =   £ (-2Xi)(T0l- Ti)   = aT< 0 
S2 1=/ 

iff =• £ (•**>< V TJ) = o 

(4.23) 

After rearranging the terms in Eq. 4.23, and using Eq. 4.22, the following 

equations are obtained: 

r 

4„     t*i     £*i 
A  2    J4. 

(=1  v.    t-' 

sym. 

T» 

f 4     > 

i=i 

? L y, 
l=l 

(4.24) 

Then T  . T  . T , can be solved easily in terms of temperatures at corner 
si  s2  s3 

points T ., and the modeling of the temperature distribution AT (x,y,z) by 

AT(x,y,z) is completed upon substituting the expressions in Eq. 4.20 into 

Eq. 4.19. 
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4.3 Stress Assumptions in an Element 

The actual stress 0  consists of three parts: Pß, P.ß^, and P 3 as 

can be seen in Eq. 4.7.  For each layer of a multilayer element, Pß is the 

same as that of ELEM1, and P 3 can be calculated from 
~o~o 

RA = 

e         \ f 

<ro. 
(Joy 

Ö*oE \ = 

<%z 

<w 
k 

\ 

Q4  Cl5 © 
syjn. 

'5* 

Q6 

toy $>y 

in 

«.»2 
i     < * 

0 

&tt <? 

Wvy <W 
v        J ^           x 

4T(*/y,z) 

(4.25) 

where the matrix C is the elastic matrix and can be obtained by inverting the 

compliance matrix S of Eq. 2.14; the initial strain vector is obtained from 

Eq. 4.2.  Since Pß satisfies the three equilibrium equations of elasticity 

identically, it is now necessary to derive P 3L such that (P 3 - P 3 ) will 
~t*x t~t  T>~ o 

satisfy the equilibrium equations identically.  Substituting P 3 of Eq. 4.25 
"0-0 

into the following equilibrium equations 

and integrating, one finds the following for J£ ß : 

(4.26) 
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(4.27) 

Thus, the Stresses of any layer of an element consist of £§ of ELEM1, 

P 3  of Eq. 4.2b. and P 3^ of Eq. 4.27. 

The interlayer equilibrium conditions impose constraints on o , o  » 

and a   (see Eq. 2.30).  The equilibrium of 0 is automatically satisfied, 

since O    of Pß is zero and 0 = 0 + a  -a  = 0 by Eq. 4.27.  The equi- 
z z       tz   oz 

librium of o*  and O       leads to xz     yz 

C I(Txz.6y2 ) of pß +(öi2.<ry2)pfß^] at the top of the ith layer 

s ( (6«.Gy«) °f B? +t(5x2-^Z^ß&l at the bottom of the (i+1) 
layer 

(4.28) 
th 

since P 3 does not contain nonzero transverse shear stresses.  In Eq. 4.28, 
~o~o 

the part of ?3 yields the (same) coefficient matrix A of ß in Eq. 21 of 

ELEMZ, and the pare of P^ß^ yields constant terms which constitute the vector 
"-"t-X 

3 in the constraint equation 

A ß-  ß (4.29) 

Thus, all of the ingredients needed to calculate the equivalent nodal forces 
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are now available.  In summary, the equivalent nodal forces can be obtained 

from Eq. 4.18, in which the matrices G Jl and & are tne same as defined for 

ELEMZ before, the vectors H ß and G ß are obtained by using Eq. 4.10 and 
T Eq. 4.27, the vector G ß is obtained from Eq. 4.10 and Eq. 4.25, and the 

~-o ~o 
vector § is obtained from Eqs. 4.27 and 4.28. 

4.4 Plate and Shell Evaluation Examples 

4.4.1 In-Plane Expansion of a Free Single-Layer Thin 

Isotropie Rectangular Plate 

To test the accuracy of the equivalent thermal loading represe* tatici, 

a problem for which both experimental and approximate-theoretical [53] thermal 

stress data are available is chosen as a test problem. It is a free single- 

layer thin rectangular isotropic plate heated linearly in the plate plane and 

uniforml - across the plate thickness direction as illustrated in Fig. 29; other 

pertinent data for this problem are given in Table 16.  Because of the sym- 

metry of the plate and the temperature distribution, only a quarter of the 

plate is used in the analysis and only the in-piane displacements and stresses 

need to be considered. 

The in-plane displacement pattern calculated by the present finite- 

element method using a 5x4 mesh is plotted in Fig. 30. In Figs. 31a, 31b, and 

31c, the in-plane stresses o, O  , and a , respectively, are plotted against 

both experimental and theoretical results of Ref. 53. It is seen that the 

direct stresses (a and ö ) calculated by using the present finite-element 

method agree very well with both results; the shear stress (C  ) prediction 

is also very good, except near the edges, because the free traction edge con- 

dition is satisfied only in an average sense in the present finite elernenL 

modeling,  it should be mentioned that the theoretical results of Ref. 53 are 

only approximate; the direct stress O    is first assumed according to a dis- 

tribution which is exact for an infinite strip under thermal loading and the 

other stresses are then determined according to the Principle of Complementary 

Energy. Also, as mentioned in Ref. 53, the temperature control to give the 

temperature distribution of Fig. 29 for the experiment is not perfect.  There- 

fore, some slight discrepancies between the theoretical and experimental 
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results are expected.  However, the present prediction agrees very well with 

both of the comparison results.  This demonstrates the accuracy of the present 

equivalent thermal loading calculation and the associated FE analysis. 

4.4.2 Bending of a Clamped Thin Isotropie Rectangular Flatty 

Subjected to Nonuniform Temperature 

The dimensions and properties of the plate under consideration are 

listed in Table 17.  For a thin rectangular isotropic plate under thermal 

loading and having all four sides it"'»ally clamped, the thermal stress problems 

can be solved by recognizing that the governing equations on the transverse 

displacements are identical to those of the same plate under distributed 

static lateral loading.  In Ref. 54, it is shown that this equivalent static 

load, denoted by p* is 

wnere 

M- = ot E   Tzdz 
1 J-h/2 

(4.30) 

(4.31) 

where v is the Poisson ratio, E is Young's modulus, a is the linear thermal 

expansion coefficient, and T is the temperature distribution.  In the present 

example, a temperature distribution constant in x, parabolic in y, and linear 

in z is assumed (see Fig. 32a).  Thus, the results calculated by the present 

hybrid-stress FE approach can be compared with that of the classical solution 

[18] for a clamped rectangular plate under uniform loading.  The displacements 

along the central lines of the plate, obtained by the present method with an 

8x8 uniform mesh in a quarter of the plate are plotted in Figs. 32b and 32c, 

together with the central deflection predicted by the classical solution for 

static bending [18].  The present prediction for the central deflection is 

almost identical to the classical exact solution of Ref. 18. 

4.4.3 Simply-Supported, Infinitely-Long, Two-Layer, Cross-Ply 

(0a/9Q°) Thin Strip Subjected to a Uniform Temperature 

Distribution 

The material properties and dimensions of the thin flat strip are de- 

scribed in Table 18; the pertinent coordinates and geometry are depicted in 
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Fig. 33a.  Since this laminated plate is not balanced in the sense that the 

expansion properties are not symmetric in z, even a uniform temperature will 

cause a transverse displacement as can be seen in Fig. 33b.  Also, thermal 

stresses are induced.  Plotted in Figs. 33c through 33f are the in-plane 

stresses and interlaminar shear stresses.  No other solutions are available 

at present for this problem; therefore, no comparisons can be made.  From 

Figs. 33c and 33d it is seen that the maximum a occurs near the simply- 

supported edges (x = + 8  in.) in the lower layer because the lower layer has 

a larger elastic constant E. in whe x-direction. The maximum interlaminar 

shear stress a   (Fig. 33e) occurs at the supported edge and the 0 stress 

is almost constant along the x-direction. 

4.4.4 Simply-Supported, Three-Layer, Cross-Ply (0o/90o/0°), 

Thick, Cylindrical Shell Subjected to a Uniform 

Temperature Distribution 

A uniform temperature is applied to a thres-layer cylindrical shell of 

finite length, simply supported at each end.  The material properties and the 

dimensions of the shell are described in Table 19.  Since this is an axisym- 

metric problem, only one strip of the shell is needed in the finite-element 

modeling.  In fact, only haif a strip is used because of symmetry in the axial 

direction also.  The calculated radial displacements resulting from the applied 

temperature are plotted in Fig. 34a.  It is interesting to note that the maxi- 

mum radial deflection does not occur at the cei u.ral section but at a place near 

the center section.  However, this phenomenon is a result of the particular 

combination of the length, thickness, and radius ratios used in this example 

and should not be regarded as a general result.  In Fig. 34b, the axial dis- 

placements of six representative sections are plotted.  The distortion from 

the original plane section is most severe at the supported edge but dies out 

gradually toward the central section.  A reverse of the direction of rotation 

of the cross section occurs near the central section (x=7).  This is consistent 

with the small decrease of radial displacement near the central section 

(Fig. 34a). 
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4.5 Summary 

The thermal-stress analysis by the present hybrid-stress finite- 

element method is shown to be equivalent to a static analysis Cas is well 

known to be true also for other types of thermal analyses).  The equivalent 

thermal loading vector for a hybrid stress model is derived using an initial- 

strain approach.  Arbitrary temperature distributions on any element are ap- 

proximated by simple functions; linear in x and y, and parabolic in z.  The 

accuracy of the present method is demonstrated in two simple problems: (1) 

in-plane plate expansion and (2) thermal-induced bending of a plate; good 

agreement is observed for both displacement and stress predictions. Two 

other problems, a two-layer plate and a three-layer cylindrical shell, each 

under a uniform temperature distribution, are also solved and the results are 

discussed. 
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SECTION 5 

SUMMARY AND CONCLUSIONS 

5.1 Summary 

This study has been devoted to the development and evaluation of hybrid 

stress flat-plate finite elements for use in analyzing laminated plate and 

shell structures.  Transverse shear deformation effects as well as in-plane 

and rotary inertia for vibration analysis are included.  The plate and shell 

structures under consideration range from very chin to very thick.  According 

to the loading conditions applied to the structure, this study can be divided 

into three categories: static analysis, vibration analysis, and thermal stress 

analysis. 

These three types of loading conditions are discussed since they repre- 

sent the basic loading environment that many structures, particularly aero- 

nautical and aerospace structures, may encounter.  These basic analyses serve 

as the foundation for future studies on transient dynamic and other compli- 

cated loading conditions.  Also, they are necessary aspects in the evaluation 

of the properties of certain finite elements developed so that the reliability 

anJ limitations of these finite elements can be assessed before these finite 

elements are applied to practical structural analysis and design. 

In static finite-element analysis, the basic task is to develop reliable 

stiffness matrices that converge rapidly to correct solutions, with a "minimum" 

number cf degrees of freedom.  To achieve this goal, studies were made first on 

single-layer elements.  An outline of the derivation of single-layer flat- 

plate elements by the hybrid stress mouei is given and a LoLai u£ uin« cleiaents 

witn different stress and boundary displacement assumptions were tested cm  a 

very thin flat plate as well as on a very thick fiat plate.  Among these ninu 

finite elements» a quadrilateral element designated as ELEMl (with .linear boundary 

displacements and linear in-plane stress assumptions) is chosen for use because 

of its fast convergence, excellent, accuracy, and simplicity,. 

Then trie derivation ot the stiffness matrix for a multilayer element 
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was carried out by extending the basic single-layer flat-plate element FLFM1 

to a multilayer element (designated by F.LEMZ) which has independent boundary 

displacements that can model the local deformatio- of each layer of a plate 

or shell closely.  For relatively thin multilayer plates or shells, an ele- 

ment designated by LLEMR is obtained by reducing the nodal degrees-of-freedom 

of LLEMZ. 

Two transformation formulas are given for single-layer and multilayer 

fiat-plate elements so that their application can be broadened to include 

curved-sneli problems. 

Various static-plate and curved-shell problems/ including both thin and 

thick, single-layer, two-layer, and three-layer problems, have been solved 

using the three elements developed in this study, and comparisons have been 

made with other existing solutions.  It is found that tnese elements are indeed 

very effective in predicting both displacements and stresses of plate and shell 

structures under static loading. 

For vibration analyses using the hybrid-stress model, a brief discussion 

of the variational basis of the derivation of a mass matrix is given, followed 

by the development of lumped and hybrid-rational mass matrices for the three 

elements mentioned earlier.  Based on the results of test problems, the less 

accurate lurnped-mass approach was discarded, and the superior hybrid-rational 

mass approach was adopted for subsequent use.  Several example problems were 

solved.  Frequency predictions were compared with other existing solutions, 

and good accuracy of the present predictions is observed in general. 

The steady-state thermal stress analysis carried out by the hybrid-stress 

finite-element model is characterized by *.i.e development of an equivalent th^rn-.,« l 

loading vector; tne analysis is otherwise iimilar to a static analysis.  The 

temperature distribution wi^-iin an element is modeled for convenience in the 

present study by a linear approximation in the plane surface and by a parabolic 

fit in the transverse direction.  Then initial strains and their correspond? vg 

stresses are computed based on these temperature distributions,- the total stress 

assumptions are such that they satisfy the equilibrium conditions of elasticity. 

The equivalent thermal loading vector is obtained through the application of a 
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variational principle that includes the temperature effects as initial strains, 

Problems involving in-plane expansion and transverse bending induced by 

temperature were solved.  Because of the limited number of existing numerical 

solutions on thermal stress problems, only two of the example problems were 

compared to other solutions; they show very good accuracy for displacement and 

stress predictions. 

In summary, three quadrilateral flat-plate elements: ELEM1, ELEMR, and 

ELEMZ were developed and verified to provide reasonably accurate and reliable 

predictions for static, vibration, and thermal stress problems.  They all have 

similar assumptions on stresses and boundary displacements but differ in their 

applicability to (1) thin or thick and (2) single-layer or multilayer plate 

and/or shell problems. 

5.2 Conclusions 

Based upon the results of various numerical verifications included in 

thic study, the following conclusions may be stated: 

(a) The present finite-element method is reasonably efficient 

and accurate for predicting stress and dispJ ^cement re- 

sponses to static or thermal loadings and natural fre- 

quencies for free vibrations of plate and shell structures. 

(b) For single-layer problems, ELEM1 is recommended for use. 

However, if the thickness becomes large (for thickness- 

to-side ratio h/£ greater tr-an about 0.1), it is advisable 

to subdivide the single-layer into sublayers and use ELEMZ 

to model the local deformation more closely. 

(c) For relatively thin multilayer plates or shells with h/l 

or h/R (R = radius) smaller than 0.1, the ELEMR element 

can be used.  It has been pointed out in Subsection 2.7 that 

the element reported in Ref. 29 is a better choice for this 

range of application. 
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(d) For (1) relatively thick plates or shells or (2) laminates 

that have -elativeiy low shear moduli and/or a high ratio of 

elastic constants in different directions, the ELEMZ multilayer 

element should be used so that local deformations and stresses 

are predicted accurately. 

(e) Predictions or the lowest natural frequency are usually 

accurate even when a small number of elements is used', 
• •- t '      -v 

but more elements are needed for suitably accurate predic- 

tions of the higher frequencies. 

(f) Comparisons of predictions from using two assumed-displace- 

ment finite elements for thick laminated plates on static 

problems showed that the present hybrid-stress element 

ELEMZ provides more accurate predictions for a given number 

of unknowns (and hence is less expensive).' 

(g) Thermal effects are accurately accounted for through the 

computation of an equivalent thermal loading vector in 

the present hybrid-stress formulation.  The limitations 

on the present finite-element methods lie in the fact that 

the normal stress a  is assumed to be zero and the transverse 
z 

displacement w is assumed to be constant throughout the 

whole thickness of an element.  While errors in the o or the 
z 

w prediction are usually negligible, these restrictive as- 

sumptions do have some effect on the other stress predictions. 

The present approach always yields symmetric results with re- 

spect to the middle surface of an element if t.'."»e laminate is 

symmetric; however, the actual results may involve some devi- 

ation from symmetry because the load may act on only one sur- 

face of the laminate.  Fortunately, such deviation is usually 

negligible except for very thick plates, for example, for h/Z 

greater than about 0.25 [2J. 

In general, tiic stiffness matrices, m..ss matrices, and the equivalent 

thermal loading vectors developed in this study are very effective.  They ca-. 

be used for detailed displacement and stress analysis. Also they constitute a 
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sound foundation for transient dynamic analysis. 

5.3 Suggestions for Future Research 

A direct and useful extension of the present work would be the study of 

the response of layered structures under transient dynamic loadings.  Since 

the Lasic stiffness matrix and the mass matrix are already developed, in theory 

it is necessary only to select an efficient timewise numerical integration 

scheme [55J to solve the transient equations of motion if damping can be neg- 

lected.  Otherwise, a damping matrix will have to be developed. 

The geometric stiffness matrix needed in a buckling analysis could be 

developed in a manner similar to the treatment used in the derivation of a 

mass matrix by the hybrid stress model.  In fact, the derivation of a geometric 

stiffness matrix based on a mixed variational principle has already been reported 

by Allman {56J; even earlier Lundgren [573 obtained a geometric stiffness matrix 

for laminated plates by independently-assumed displacement functions.  Thus, the 

extension of the present work to a linear buckling analysis including thermal 

buckling seems to be quite feasible. 

Another area of interest is the nonlinear analysis of plates and shells. 

Both geometric and material nonlinearities could be considered.  For geo- 

metrically nonlinear problems, the incremental approach [58] seems to be the 

most direct solution.  However, some modifications of the present finite-element 

models would be needed since the present quadrilateral flat-plate element will 

not fit the deformed shape of a plate or a shell.  For elastic-plastic-type 

material properties, some progress has been made recently [59] for hybrid 

stress finite-element models.  The inclusion of elastic-plastic behavior in 

this hybrid-stress tinite-element context may turn out not to be as difficult 

as the treatment, of geometrically nonlinear problems.  These nonlinear effects, 

of course, have been accommodated in assumed-displacement finite-element, finite- 

difference, and other methods for Isotropie single-layer and/or multilayer 

structures. 
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TABLE 1 

IDENTIFICATION OF THE VARIOUS TYPES OF HYBRID-STRESS 
FLAT-PLATE FINITE ELEMENTS EVALUATED 

TYPE STRESS DISPLACEMENT DOF COMMENTS 

ELEM1 a L, L L 20 
Good 
Element 

ELEMA n L, L L 20 Too Stiff 

ELEMB M L, L L,Q 20* Too Stiff 

v—       -XD 

ELEMC a L, L Q 32* Singular 

ELEMD N L, LW L. Q 20* 
Fair but 
Stress Field 
too Simple 

ELEME n L, Q L 20 Too Stiff 

ELEMF m L, Q Q 32* Too Flexible 

ELEMG M L, Q Q" 20 
Good but Use 
is Limited 
to Flat 

ELEM^ L, Q L, g 20 
Good but 
Complex 

After static condensation 

O = Element corner node 

• = Element side mid-point node 

L,L = Respectively, complete and incomplete linear functions of x and y 

Q,Q    = Respectively, complete and incomplete quadratic functions of x and y 
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TABLE 2 

DATA FOR SINGLE-LAYER ISOTROPIC PLATES* 

(a) Simply-Supported Thin Plate 

Loading: Concentrate Central Loading 

Aspect Ratio = 1:1 

Thickness-to-siae Ratio = 1:100 

Boundary Condition: Simply-Supported, no tangential rotation 

Finite Element Breakdown: Uniform mesh in a quarter 

(b) Clamped Square Thin Plate 

Loading: Concentrate Central Loading 

Aspect Ratio »1:1 

Thickness-to-sidj Ratio = 1:100 

Boundary Condition: Clamped 

Finite Element Breakdown: Uniform mesh in a quarter 

(c) Clamped Rectangular Plate 

Loading: Uniform Load 

Aspect Ratio - 1:2 

Thickness-to-short-side Ratio = 1:100 

Boundary Condition: Clamped 

Finite Element Breakdown: Uniform mesh in a quarter with 

element aspect ratio 1:1 and 1:2 

(d) Skewed Simply-Supported Thin Plate 

Loading: Uniform Load, p(psi) 

Aspect Ratio = 1:1 

Thickness-to-side Ratio = 1:100 

Length of each side = a 

Boundary Condition = Simply-Supported, tangential rotation allowed 

Finite Element Breakdown: Uniform mesh for the whole plate 

(e) Simply-Supported Square Thick Plate 

Loading: Uniform 

Aspect Ratio = 1:1 

Thickness-to-side Ratio = 1:4 

Boundary Condition: Simply-Supported, no tangential rotation 

Finite-Element Breakdown: Uniform mesh in a quarter 

*     7 3        2 
L = 10 psi, \) -  0.3 for all cases; D = Eh/[l2(l - V )], h = plate thickness 
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TABLE 3 

DATA FOR TWO-LAYER PLATES 

!a)  Clamped Cross-Ply Rectangular Thin Plate 

Loading: Uniform 

Aspect Ratio = 1:2 
h 

Tliickness-to-side Ratio = 1:100    "J 

Boundary Condition: Clamped 

V 
T 

Finite Element Breakdown: Uniform mesh in a quarter, square elements 

Material: E /E2 = 40, G^/E-j = 0.5, V^ = 0.25 

Orientation: 0°/90° 

(b) Clamped Cross-Ply Square Thin Plate 

Same as in (a), except Aspect Ratio = 1:1 

(c) Clamped Angle-Ply Square Thin Plate 

Same as in (b), except fiber orientation = + 45° 

(d) Simply-Supported Pugle-Ply Square Thick Plate 

Loading: q  sin(iTx/a) sin(TTy/a) 

Aspect Ratio = 1:1 

Thickness-to-side Ratio = 1:0 

Boundciry Condition: Simply-Supported, free in tangential direction, 

no normal displacement 

Finite Element Breakdown: Uniform mesh for the whole plate 

Material: \/V    = 40, G 2/E = 0.6, G
2/^2 =  ü-5* v12 = °-

25 

Orientation: ö varies 
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TABLE  4 

DATA FOR THREE-LAYER PLATES 

J2,W 
(a)    Cross-Ply Long Strip: 

Loading:  q    sin(tfx/a) 
o -00 —- 

Aspect Ratio • 1;« 

Thickness-to-short-side Ratio = 1:4 X,U 
Boundary Condition: Simply-Supported, no tangential rotation 

Finite Element Breakdown: Uniform mesh in half a strip in x-direction 

Material: E = 25 x 10 psi, E « 10 psi, G  » 0.5x10 psi 

G23= 0.2xl0
6psi, v12= V23= 0.25 

Orientation: 0°/90M/0o 

Nondimensionalized quantities: u = E_u(0,z)/(hq ) 

ox = ax(i/2,z)/qo. a  = a (o.z)/q xz   xz '  ^o 

w = 100 • E h"w(i/2,0)/(q *4> 

(b) Cross-Ply Plates 

Loading: q sin(t?x/a) sinftry/b) 

Boundary Condition: Same as in (a) 

Finite Element Breakdown: Uniform mesh in a quarter 

Material: same as in (a) 

Orientation: Same as in (a) 

(1) Aspect Ratio = 3: b = 3a 

Thickness-to-short-side Ratio h/a = 1/10 

(2) Aspect Ratio: a/b = 1 

Thickness-to-side Ratio h/a = 1/4 

Nondimensionalized Quantities 

ü= u(a/2, o,z) ET/(q a
3/h2) 

JJX = ö <0,0,z)/(q a
2/h ) 

°xy = °xy(a/2' A/2°'  2)/(V /h } 

*xz = °xz(a/2' °' 2>/<%*/"> 
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TABLE 6 

DATA FOR THIN CYLINDRICAL SHELLS 

(a. Pinched Cylindrical Shell 

Loading: Pinch Load, P (lbs) 

Radius: a = 10 in. 
\ 

Length i =  31.42 in. I  

Thickness: h = 0.1 in. 

Boundary Conditions: Simply-Supported, no tangential rotation 

Finite Element Breakdown: Uniform mesh in one-eighth 

Material: Isotropie, F = 1.0 psi, V • 0.28 

(b) Ring-Loaded Cylindrical Shell 

Loading: Axisymmetric Ring Load of Q  = 1.0 lb/in 

Radius: a » 10 in. 

Length: I  =< 31.42 in. 

Thickness: h -  0.1 in. 

Boundary Conditions: Free edge 

Finite Element Breakdown: Uniform mesh in one strip 

Material: Isotropie, E = 1.0 psi, V Ä 0.28 
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TABLE 7 

DATA FOR CONICAL SHELLS 

(a)  Isotropie Single-Layer Conical Shell 

Loading: Axisymmetric Ring Loads near free end,^ 

Radius at smaller end = 10 in. ' 

Radius at larger end = 15 in. 

Length of meridian '-  10 in 

Semi-angle of cone = 30° 

Thickness - 0.025 in., 0.1 in., 0.5 in.,/ 1.0 in.       ! 

Boundary Condition: Clamped at smaller end, free at larger end 

Material = Isotropie, E = 10 psi, V = 0.3 

Finite Element Breakdown: 20 elements in the first 2 inches 

from the frte end, 15 alements in the next 3 inches, and 

10 elements in the last 5 inches 

T^R-, 
ISiN 

I  
10 IN 

Ring Loading Q at s 
(lb/in) (in) 

1.0 •    0 
0.75 0.3 
0.50 0.6 
0.25 0.9 

J. 

(b) Sandwich Conical Shell 

Same as in (a), except 

Thickness: 0.01 in. for top and bottom layer and 0.08 in. for 

the core 

Material: E = 10 psi, V = 0.3, isotropic for cover lay^r«. and 
4 6 

E = 10 psi, J = 0.3, g •- 10 psi for the core 

(c) Two-Layer Conical Shell 

Same as in (a), except 

Thickness: 0.13 in. for cover material and 0.5 in. for base material 

Material: Glass Phenolic cover, E = 10 psi, v = 0.3, isotropic 

Aluminum base, £ = 10 psi,  v = 0.3 isotropic 
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TABLE   8 

PERCENTAGE  ERROR OF THE  LOWEST FREQUENCY  PREDICTED FOR 

A  SIMPLY-SUPPORTED SQUARE   THIN PLATE   USING  ELEMl 

CO  - (0 

CO 
-  1)   x 100 

MESH DOF LUMPED MASS HR MASS 

2x2 27 - 5.2 5.1 

4x4 75 - 1.3 1.2 

6x6 147 - 0.6 0.6 

8x8 243 -0.4 0.3 

Thickness = 0.1 in., Side length - 20 in., E = 1 psi, v = 

to * Exact Lowest Frequency (Ref. 40) = 0.00149 rad/sec 

0.3, p = 1(lb-sec2)/in4 

Uniform raesh in a quarter of the plate 

TABLE 9 
i 

PERCENTAGE ERROR OF THE LOWEST FREQUENCY PREDICTED FOR 

A CLAMPED RECTANGULAR THIN PLATE USING ELEMl 

10 - CO 
(- 

o 
CO 

- 1) x 100 
o 

MESH DOF LUMPED MASS HR MASS 

2x2 27 - 7.1 4.0 

4x4 75 - 2.0 1.1 

6x6 147 - 1.0 0.3 

0..0 
^-* -j 

Thickness =0.1 in.. Short-side length = 20 in., Long-side length = 40 in., 

E = 1 psi, V = 0.3; p = 1(lb-sec2)/in4 

to = Exact Lowest Frequency (Ref. 40) = 0.00187 rad/sec 

Uniform mesh in a quarter of the plate. 
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TABLE   10 

FREQUENCY  PREDICTIONS   FOR THE   FIRST   SEVEN  SYMMETRIC   MODES   OF   VIBRATION 
OF  A SIMPLY-SUPPORTED   RECTANGULAR THIN   PLATE   USING ELEM1  AND THE 

HYBRID-RATIONAL  MASS   MATRIX 

4QDE* 

m-n 

EXACT** 6x12 MESH 8x8 MESH 

OJ Error (%) to ERROR(i) 

1-1 1.25 1.2565 0.52 1.2540 0.32 

3-1 3.25 3.2363 1.12 

3."74 

5.74~" 

3.3340 2.58 

5-1 7.25 

9.25 

7.5021 

9.7807 

7.9220 9.27 

1-3 9.5198 2.92 

3-3 11.25 

13.25 

11.7754 

14.2323~ 

4.40 

7.41 

11.5685 2.83 

7-1 16.0343 21.01 

5-3 15.25 15.9259 4.43 16.545 5.28 

++ 

Mode Shape:  sin(miT/a)   sin  (mr/b) 

t O , 9 9 9        ** 
Ref. 40 exact solution: to = TT /D/?h (m /a + n /b") ; a = 2b; 

normalized to = (m2/4 + n2) ; D ~  Eh /[12(1 - V )]. 

Results of a 6x2 uniform mesh in a quarter of the plate (6 in the long 

dimension); total DOF = 273; total computing time on IBM 370/155 = 5.9 min. 

Results of an 8x8 uniform mesh in a quarter of the plate; total DOF = 243; 

total computing time on IBM 370/155 = 6.6 min. 
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TABLE  IX 

PERCENTAGE  ERROR OF THE  LOWEST FREQUENCY  PREDICTED FOR A 
TWO-LAYER CROSS-PLY   (0D/90°)   SQUARE THIN PLATE  USING 

ELEMR AND THE  HR MASS  MATRIX 

Ü)   -   CO 

u> - 1)  x 100 
p 

MESH DOF HR MASS 

2x2 45 3.0 

4x4 125 - 0.5 

6x6 245 - U.1J 

8x8 405 - 0.16 

Ex/E2 = 40, G12/E2 = 0.5, V  = 0.25, p = 1 

cü = Lowest frequency calculated in Rf f. 22 = 0.00614 rad/sec 

TABLE 12 

DATA FOR THE VIBRATION ANALYSIS OF A SIMPLY-SUPPORTED TWO-LAYER 
CROSS-PLY (0°/90°) INFINITE STRIP 

(a)  Material Properties 

Bottom-Layer = E. = 1.0922, E = 41.983, V  = 0.00520, V  = 0.2, G  = G  = 1 

Top-Layer = Ex - 43.516, E2 = 1.0455, V12 = 0.20812, V23 = 0.2, G12 = G23 = 1 

(b)  Finite-Element Discretization 

Eight ELEMZ elements in half strip (£/2)and two sublayers for each layer; 

i.e., treating the two-layer plate as a four-layer plate. 
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TABLE   13 

COMPARISON OF PREDICTIONS FOP. THE LOWEST FREQUENCIES OF 3«LAYER 
SIMPLY-SUPPORTED SQUAPE PLATES 

CASE d1/d2 VG2 

FREQUENCY(A) ERROR % 

CPT ELEMZ EXACT CPT ELEMZ 

1 1 1 0.077054 0.07533 0.0745 3.4 j   1.1 

2 1 2 

5 

15 

0.093994 

0.13239 

0.215642 

0.090973 0.089986 4.5 1   i.l 

3 

4 

1 

1 

0.12437 0.123072 7.6    1.1 

0.18529 0.183664 17.4 0.9 

5 2 15 0.196852 0.16897 0.167574 17.5 0.8 

6 3 15 0.18225 0.15633 0.155082 17.5 o.a 

Iso-ropic, V = V = V « 0.3, G = G , d = Mass Density, d = d3 

h /a = 0.01, h /a = 0.08, h - h 

A = w(d h /G )^/2, oj = angular frequency (rad/sec) 

CPT * classical plate theory, Ref. 42 

EXACT = Ref. 42 

Finite-Element Discretization = uniform 4x4 mesh in a quarter of the plate 

XELEMZ with the HR Mass Matrix 
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TABLE  14 

PROPERTIES  OF A THREE-IAYER CYLINDRICAL SHELL 

LAYER THICKNESS 
(in.) 

C  * 
11 = 22 

C33 C12 C13 C23 C44 C55 C6G 

Inside 0.2 

0.5 

0.3 

33.03 3.032 33.32 0.3998 10.03 1.03 1.154 1.154 jl.154 

Middle 33.02 

33.02 

3.032 33.32 0.3998 10.03 1.03 11.54 0.1154|0.1154 

Outside 3.032 33.32 0.3998 10.03 1.03 1.154 1.154 1.154 

Elastic constants c. .  defined by 0,   = C. .  E.,   i. j  = 1,   2  #...6   (units in 10    psi) 

TAELE   15 

COMPARISON OF PREDICTIONS FOR THE LOWEST FREQUENCIES OF 3-LAYLR 
SIMPLY-SUPPORTED CYLINDRICAL SHELLS IN AXISYMMETRIC VIBRATION 

H/l 
a 

(in) 

FREQUENCY(RAD/SEC) ERROR+t%) 
CST RST ELEMR"1- ELEMZ + ET CST RST ELEMR ELEMZ 

0.01 0.5 171.65 171.65 172.91 172.91 171.65 0.0 0.0 0.7 0.7 

0.05 0.5 177.54 177.28 177.37 177.35 177.35 0.1 0.0 0.0 0.0 

0.10 0.1 233.14 228.15 230.10 229.11 228.63 2.0 - 0.2 0.6 0.2 

0.20 .05 647.82 560.22 593.67 574.00 568.52 13.7 - 1.6 4.4 0.9 

0.40 .025 2502.9 1607.8 1874.2 1728.5 1704.4 46.8 - 5.7 9.9 1.4 

0.60 .016 5620.8 2 751.2 3411.4 3099.1 3052.3 84.1 - 9.9 11.7 1.5 

0.80 .012 9989.3 3886.9 5003.0 4557.3 4495.2 122.2 -13.5 11.3 1.4 

1.00 .01 L5607.0 5005.5 6593.2 6062.4 5991.7 160.5 -16.5 10.0 1.2 

H/i  ^Thickness-to-length ratio. Mean Radius R = 10 in. H =lin. 
a = Width of flat-plate element 

CST = Classical Shell Theory, Ref. 50. 

RST = Refined Shell Theory, Ref. 49. 

ET * Elasticity Theory, Ref. 48 

The HR mass matrix is employed 

++ 
ERROR = Compared with the Elasticity Solution of Ref. 48. 
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TABLE 16 

DATA FOR A FREE SINGLE-LAYER ISOTROPIC THIN RECTANGULAR 

PLATE SUBJECTED TO THERMAL LOADING 

(a)  Material Properties : 
~b 

E = 10.4 x 10 psi, V = 0.3, a = 12.7 x 10  in/in- F 

(b) Dimensions: 

Rectangular plate with long-side length = 2a = 36 in, short-side 

length = 2b = 24 in, and thickness = 0.25 in 

(c) Temperature Distribution 

Linear variation in the short-span direction and constant 

in the long-span direction.  Maximum temperature rise T 

is 150 °F (see Fig. 28b) 

(d) Finite Element Discretization: 

Uniform 5x4 mesh in a quarter of the plate with ELEMZ 

"degeneralized" for this single-layer problem 

TABLE 17 

DATA FOR A CLAMPED RECTANGULAR SINGLE-LAYER ISOTROPIC THIN PLATE 

SUBJECTED TO THERMAL LOADING 

-6 
(a) Material Properties: 

E = 1.0 psi, v = 0.3, tt = 1.0 x 10 " in/in-°F 

(b) Dimensions: 

Rectangular plate with long-side length = 32 in, short-side length 

= 16 in and thickness = 0.16 in 

(c) Temperacure Distribution: 

Parabolic in the short-span direction and constant in the 

long-span direction (see Fig. ,'idj 

(d) Finite-Element Discretization: 

Uniform  8x8 mesh  in  a quarter of   the plate with  ELEMZ 

"degeneralized"   for  this  single-layer  problem 
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TABLE   18 

DATA FOR A SIMPLY-SUPPORTED TWO-LAYER CROSS-PLY    (0°/90°) 
INFINITELY-LONG THIN  STRIP 

(a) Material Properties: 

VE2 * 25< G12/E2 " °'5' G23/E2 = °-2'  U!2 " V23 " °-25' 
E = 1 psi (Longitudinal a)/Transverse a) = 1/3, 

Longirudinal a = 1.0 x 10  in/in-°F 

(b) Dimensions: 

Short-span length = 16 in, Thickness = 0.16 in (0.08 in. for 

each layer) 

(c) Temperature Distribution: 

1 °F uniformly distributed over the entire strip 

(d) Finite-Element Discretization: 

Eight ELEMZ elements in a half span 

(e) Boundary Condition: only transverse displacements along 

the supported edges(x = + 8 in.) are constrained. 
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TABLE   19 

DATA FOR A SIMPLY-SUPPORTED   THREE-LAYER CROSS-PLY    (0°/90°/0< 

CYLINDRICAL SHELL SUBJECTED TO THERMAL  LOADING 

(a) Material Properties: 

VE2 "  25'   G12/E2 "   0-5<G23/E2 =  °-2'   V12 "  V23 =  °-25' 
E    = 1 psi   (Longitudinal a)/(Transverse a)   = 1/3,   Longi- 

tudinal a = 1.0 x  10       in/in-°F 

(b) Dimensions: 

Mean Radius = 20 in., Thickness = 1 in. (0.2 in. for inside 

layer, 0.5 in. for middle layer and 0.3 in. for outside 

layer).  Total length = 16 in. 

(c) Temperature Distribution: 

1 °F uniformly distributed over the entire shell 

(d) Finite-Element Discretization: 

Eight ELEMZ elements in half strip 

(e) Boundary Conditions:  only radial displacements along the 

supported edges are constrained. 
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(a)  Fiber Orientation 

^ ::ODAL DISPLACEMENTS 

(b)  Geometry, Coordinate, and Displacement Nomenclature 

FIG. 1  NOMENCLATURE FOR COMPOSITE FLAT-PLATE FINITE ELEMENTS 
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(c)    Triangular Element 

Gru 

(d)     General Quadrilateral Element 

FIG.    1     CONCLUDED 
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FIG.   2     CENTRAL DEFLECTION OF A SIMPLY-SUPPORTED,  CENTRALLY- 
LOADED,  SQUARE,   ISOTROPIC,  THIN,  SINGLE-LAYER PLATE 
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SOLUTION   (REF.   21) 
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FIG.   3     CENTRAL DEFLECTION OF A SIMPLY-SUPPORTED,  UNIFORMLY-LOADED, 
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FIG.   6    CENTRAL DEFLECTION OF A CLAMPED,   ISOTROPIC,   RECTANGULAR,  THIN, 
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FIG.   8     CENTRAL DEFLECTION OF A CLAMPED,  TWO-LAYER RECTANGULAR, 
CROSS-PLY  PLATE UNDER UNIFORM LOAD 
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FIG.   9     CENTRAL DEFLECTION OF A CLAMPED,  TWO-LAYER,   SQUARE,  CROSS-PLY 
PLATE UNDER UNIFORM  LOAD 
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FIG.   12     DISPLACEMENT AND STRESS  SOLUTIONS  FOR AN  INFINITE THREE-LAYER 
CROSS-PLY  PLATE WITH SIMPLY-SUPPORTED EDGES,   SUBJECTED TO 
SINUSOIDAL LOADING 
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FIG.   13    DISPLACEMENT AND STRESS  SOLUTIONS  FOR A SIMPLY-SUPPORTED 
THREE-LAYER CROSS-PLY  SQUARE PLATE  SUBJECTED TO SINU- 
SOIDAL LOADING 
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FIG.   16     PREDICTED CENTRAL RADIAL DEFLECTION OF A THIN,   SINGLE- 
LAYER,   ISOTROPIC CYLINDRICAL SHELL UNDER RING LOAD 
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PIG.   23     COORDINATE TRANSFORMATION  FOR A QUADRILATERAL ELEMENT 
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FIG.   24     THE LOWEST FREQUENCY OF A SIMPLY-SUPPORTED,   SINGLE-LAYER# 

THIN,   ISOTROPIC,  SQUARE PLATE 
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FIG.   25     THE  LOWEST FREQUENCY OF A CLAMPED,  SINGLE-LAYER,   ISOTROPIC, 
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FIG. 28  TEMPERATURE ASSUMPTIONS FOR ONE LAYER OF A MULTILAYER 

QUADRILATERAL ELEMENT 
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PIG.   29     DIMENSION,   COORDINATE SYSTEM,   AND TEMPERATÜRE  DISTRIBUTION 
OP A PREE,   SINGLE-LAYER,   THIN,   ISOTROPIC RECTANGULAR PLATE 
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FIG.   30     DISPLACEMENTS OF A QUARTER OF THE PLATE OF FIG.   29 
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FIG.   32     DIMENSIONS,  TEMPERATURE,'AND CENTERLINE  DEFLECTIONS  OF A 
CLAMPED SINGLE-LAYER,  THIN,   ISOTROPIC  RECTANGULAR PLATE 
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FIG. 33 DIMENSIONS, COORDINATE SYSTEM, DEFLECTIONS, AND STRESSES OF 
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ALONG EDGES AND SUBJECTED TO UNIFORM TEMPERATURE 
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FIG.   34    RADIAL AND AXIAL DEFLECTION OF A SIMPLY-SUPPORTED THREE-LAYER 
CROSS-PLY CYLINDRICAL SHELL SUBJECTED TO UNIFORM TEMPERATURE 
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APPENDIX 

COMPUTATIONAL SCHEMES FOR STATIC AND VIBRATION ANALYSIS 

Since the purpose of this study is to develop and evaluate new useful 

finite elements, example problems chosen are often relatively simple in geo- 

metry so that results can be compared with those of other existing solutions 

and computation can be completed economically. Consequently, the computa- 

tional schemes chosen for use in this study are suitable for medium-sized prob- 

lems with total degrees-of-freedom no more than about 1000. 

A thermal stress analysis, as shown in Section 4, can be reduced to a 

static analysis by transforming the initial thermal strains into an equivalent 

loadin- vector. Thus, for both static and thermal stress analyses, the system 

aquations to be solved may be represented by 

IS i "E (A.D 
where K is the system stiffness matrix, q* is the unknown nodal displacement 

vector, and F is the force vector. To solve Eq. A.l the method of triangular 

factorization is used. The JK matrix is decomposed into three matrices: 

Ks LftLT (A.2) 

where L is a lower triangular matrix with zero elements in the upper triangle 

and unity on the diagonal, and D is a diagonal matrix. Note that the decom- 

position is easily achieved by successive substitution starting from the first 

row-and-column element of £. Combining Eq. A.l and Eq. A.2, one obtains 

LpL'I^F (A.3) 

Defining a new unknown vector 

y-pi-V (A.4) 

one obtains 

LY=F (A.5) 
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Now Eq. A.5 can be solved readily for Y  since L is a lower triangular matrix; 

the solution of £ can oe obtained by successive substitution starting from the 

first unknown. Once Y is obtained, q* can be obtained similarly from Eq. A.4 
T ~ 

by noting that D L is i.n upper triangular matrix. Thus, two steps a*- >.n- 

volved in the solution of Eq. A.l: (a) decomposition, which also involves only 

successive substitution, and (b) successive substitution to obtain £ and then 

q*. »*- 

For vibration analysis, a system mass matrix is added and the system 

equations are, from Eq. 3.15, 

(K-«'M)S*=0 (A.6, 

where u is the natural frequency to be determined. 

Many eigenvalue schemes can be used to solve Eq. A.6, but it is con- 

venient in programming to make use of the triangular factorization scheme of 

the static analysis. Thus, the eigenvalue solution using the Sturm-sequence 

method [42,43,44] is selected for this study. The Sturm sequence property, 

when applied to Eq. A.6, states that for any given value of W, the number of 

successive sign changes in the determinants of the leading minors of matrix 
2 

[K - u> MJ equals the number of eigenvalues that are less than w. Obviously, 

this property can be utilized to locate or "bracket" any eigenvalue by simply 

assuming a series of u's and counting the number of sign changes in the de- 

terminants . 

An important observation from the decomposition 

(K- WJM) . L DLT (A.7) 

is that the number of sign changes of the determinant of the leading minors 

equals the number of negative values in the diagonal of 0. Therefore, it is a 

simple task to determine the number of eigenvalues less than a given w once the 

decomposition of Eq. A.7 is complete. 

Using the above procedure, any eigenvalue can be isolated, and lower and 

upper bounds can be established. But for accurate determination,it is necessary 

to use an interpolation scheme to reduce further the bracket interval of an 
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eigenvalue to desirable accuracy.  In this study, a parabolic curve of w vs. 
2 

the determinant of (K - u> M) is fitted between the bounds of an eigenvalue, 

and the interpolated value of w is the estimated eigenvalue« This interpola- 

tion process is continued until changes in w is within a certain prescribed 

amount of tolerance (for example, 1/100 of the calculated u» . 

Once an eigenvalue is obtained, the corresponding eigenvector is ob- 

tained by solving Eq. A.6 with one of the degrees-of-freedom constrained. 
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